Recent and Future Developments of PET Viability Imaging

Gi Jeong Cheon, MD Department of Nuclear Medicine Seoul National University Hospital

Definition of Viable Myocardium

Prospectively

- Myocardium without scarring due to ischemia/infarct
- Dysfunction having potential functional recovery
- Viability
- Retrospectively
 - Recovery of function after successful revascularization
 - Prevention of cardiac remodeling/risk
 - <u>Hibernation</u>

Viable Myocardium as we learned

Terminology

- **Stunning:** in 1975 (Heyndrickx et al. *J Clin Invest*) canine
 - Prolonged dysfunction after <u>relief</u> of ischemia
 - Acute event of ischemia
- Hibernation: in 1978 (Diamond et al. Am Heart J) human
 - Persistent dysfunction due to reduced blood flow
 - Chronic hypoperfusion
- Pathogenesis
 - **Stunning:** reactive oxygen species due to reperfusion
 - Decreased sensitivity to Ca²⁺
 - Hibernation: change in cell structure
 - Sarcomere loss, glycogen storage, disarray of mitochondria

Spectrum of Myocardial Dysfunction

1	1	1	1	x					
						Severe	CAD		
						-			
					(Repetiti	ive nia		
							/		
CFR	CR	PERF	MET	SCAR				_	Δ
Ļ	1	1	1	x	Ste	unned myc	ocardium		
						V			
					(Persiste	nt		
					\langle	Persiste Repetitiv Ischaem	nt ve nia	l.	
					(Persiste Repetitir Ischaem	nt ve hia		
CER	CR	PERE	MET	SCAR		Persiste Repetiti Ischaem	nt ve hia		
CFR	CR	PERF	MET	SCAR	Hibe	Persiste Repetiti Ischaen	nt ve nia yocardiu	m	 B
CFR ↓↓	CR	PERF	MET	SCAR X	Hibe	Persiste Repetiti Ischaem	nt ve nia	m	 B
CFR ↓↓	CR ++	PERF	MET	SCAR X	Hibe	Persiste Repetitiv Ischaem	nt ve nia	m	 B
CFR ↓↓	CR ++	PERF	MET	SCAR X	Hibe	Persiste Repetiti Ischaem	nt ve nia	m	 B
CFR ↓↓	CR ++	PERF	MET	SCAR X	Hibe	Persiste Repetitiv Ischaem	nt ve hia yocardiu	m	 B
CFR ↓↓	CR ++	PERF	MET	SCAR X	Hibe	Persiste Repetitiv Ischaem	nt ve hia yocardiu	m	 8
CFR ↓↓	CR CR	PERF	MET	SCAR X	Hibe	Persiste Repetitiv Ischaem	nt ve hia yocardiu	m	B

Shah BN et al. Eur Heart J 2013

© SNUH NM

MRI

Stress MIBI

Rest Tl

Delayed Tl

¹³NH₃ - PET

¹⁸FDG - PET

Q/M Match vs. Mismatch

Viable Myocardium : Impact of Revascularization

Allman, J Am Coll Cardiol 2002

Clinical Viability Assessment

Diagnostic Points

- Contractile reserve
- Perfusion, perfusion reserve
- Energy metabolism
- Structure: cell intactness, fibrosis

- Dobutamine Echo
- Perfusion SPECT/PET
- FDG/FFA PET
- MRI

	(Chronic) Stunning	Transition Phase	Chronic Hibernation	Infarction
Rest Flow	Normal	Normal	$\checkmark \checkmark$	$\checkmark \land \land$
Flow Reserve	↓	$\checkmark \checkmark$	$\checkmark \uparrow \uparrow$	$\checkmark \land \checkmark$
Inotropic Reserve	+	+	±	_
Energy Metabolism	+	+	+	-
Structural Change	_	Mild	More	Fibrosis
Function Recovery	+	+	+ (delayed)	_

Viability Assessment with perfusion SPECT

Rest Perfusion

- Uptake mechanism of perfusion tracer
 - ^{99m}Tc-MIBI: binding to mitochondrial membrane
 - ²⁰¹Tl: ion-entrapment (like K⁺) in intact cells
- Determining factor of uptake
 - Perfusion
 - Preserved cell intactness
- Stunning rather than hibernation ?

PET radiotracers for myocardial perfusion

Cardiac PET vs SPECT

Viability Assessment with Metabolism

- Energy Metabolism
 - Preserved glucose metabolism in hypoxic myocardium
 - Perfusion-metabolism mismatch
 - ¹⁸F-FDG PET with glucose challenge or insulin clamp

Under Fasting

Under Carbohydrate Load

During Ischemia

Hibernating Myocardium : Classic Mismatch

LVEF changes after TX with PET findings

No of PET viable segments

Schelbert HR. Semin Nucl Med 32: 60-69, 2002

Two kinds of patients preparation

FDG: gold standard for viability

No uptake of FDG = No metabolism, Not viable

- High sensitivity and low specificity

	Sensitivity	Specificity	
Tillisch J et al. NEJM 1986	95	80	Glucose load
Tamaki N et al. Am J Cardiol 1989	78	78	Fasting

AHA/ACC/ASNC guideline; Class I, Level of evidence B

FDG PET: How to interpret

Flow/metabolism Mismatch

- Always requires perfusion images
- % Uptake of FDG
 - Requires FDG image only
 - Ratio to normal area (% uptake) > 50~60%
- 4 Metabolic rate of glucose
 - Absolute measurement of metabolism
 - Threshold is around 0.25 uMol/min/g
 - Inter-individual variation

Fasting 4 h

Fasting 8 h

Viability Assessment with SPECT

- Others
 - ^{99m}Tc-Pyrophosphate (PYP)
 - Uptake in Ca²⁺ deposit area of infarct tissue
 - ¹²³I-BMIPP
 - Fatty acid
 - metabolism

15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid

Koyama et al. J MRI 2004

Viability Assessment with PET

C-11 Palmitate PET

O-15 water PET

Detecting Hibernating Myocardium

- Comparison of Modalities

Technique	No. of studies	No. of patients	Mean EF (%)	Sensitivity (%)	Specificity (%)
Dobutamine echocardiography—total	41	1421	25–48	80	78
Low-dose DbE	33	1121	25-48	79	78
High-dose DbE	8	290	29-38	83	79
Myocardial contrast echocardiography— total	10	268	29-38	87	50
Thallium scintigraphy— total	40	1119	23-45	87	54
TI-201 rest-redistribution	28	776	23-45	87	56
TI-201 re-injection	12	343	31-49	87	50
Technetium scintigraphy—Total	25	721	23-54	83	65
Without nitrates protocol	17	516	23-52	83	57
With nitrates protocol	8	205	35-54	81	69
Positron emission tomography—total	24	756	23-53	92	63
Cardiovascular magnetic resonance— total	14	450	24-53	80	70
Low-dose dobutamine protocol	9	272	24-53	74	82
Late gadolinium-enhancement protocol	5	178	32-52	84	63

Comparison of Modalities

- General Concepts on Relative Performance
 - Dobutamine Echo: low sensitivity / high specificity
 - ²⁰¹TI SPECT: high sensitivity / low specificity
 - ¹⁸F-FDG PET: higher sensitivity / low specificity
 - DE CMR: high sensitivity / low specificity

Modality	Sensitivity	Specificity	Accuracy
^{99m} Tc-MIBI	79	58	69
Redistribution ²⁰¹ Tl	86	58	73
¹⁸ F-FDG PET	92	57	76
Dobutamine Echo	81	80	81
DE CMR	> 90%	26-68%	-

Zaret, Clinical Nuclear Cardiology 2005/ Saraste, J Nucl Cardiol 2008

Diagnostic Criteria

Usual Cutoff for Viability

- ²⁰¹TI Delayed SPECT: 50% of normal myocardium
- ¹⁸F-FDG PET: 50% of normal myocardium
- DE CMR: transmurality 25–50%

Characteristic	Imaging modality	Markers of viability
Perfusion/intact cell membrane	Thallium-201 SPECT	Tracer activity >50%
		Redistribution $>10\%$ (Δ)
Perfusion/intact mitochondria	Technetium-99m TF/MIBI SPECT	Tracer activity >50%
		Improved tracer uptake after nitrates
Glucose metabolism	FDG imaging (PET or SPECT)	Tracer activity >50%
		Preserved perfusion/FDG uptake
		Perfusion-metabolism mismatch
Free fatty acid metabolism	BMIPP SPECT	Tracer activity >50%
		Perfusion-BMIPP mismatch
Contractile reserve	Dobutamine echo/MRI Dobutamine gated SPECT	Improved contraction Infusion of low dose dobutamine

Surgical Treatment for Ischemic Heart Failure (STICH)

NEJM 2011

A Substudy of PARR-2 trial

- A Substudy of PET and Recovery following Revascularization – 2 trial

JACC 2007 JACC Img 2009

What is needed in viability test on PET

- Assessing Prognosis and Patient management
 - Prediction of improvement of symptom, exercise capacity, and QOL
- 🖶 Easy availability
 - Cardiac study dedicated scanner or cyclotron
- Hybrid system (PET/CT vs PET/MR)
 - Transmural vs non-transmural

Automatic and quantitative and reproducible methods

- Optimal cut-off
- Serial monitoring

¹⁵O-Dedicated Cyclotron System

National Cerebral & Cardiovascular Center, Japan

Proton at 18 MeV Deuteron at 9 MeV

Deuteron at 3.5 MeV

DE CMR with Stunning & Hibernation

Anagnostopouos et al. Int J Cardiol 2013

MR_delayed enhancement

FDG PET/MR

FDG PET

ARH

ARH

HLP

HLP

ARH

FDG PET MIP

Н

HLP

Automatic quantitative assessment of MI size by MGMM

JACC Img 2013, submitted

AutoQUANT

EC Toolbox

© SNUH NM

Summary

- Pathophysiology of Viability
 - Stunning/hibernation
- Viability Assessment Using Nuclear Imaging
 - ¹⁸F-FDG PET: useful tool for viability assessment
 - Usually acquired under glucose loading state
 - 201Tl redistribution/reinjection by SPECT
 - FFA, acetate can be used on cardiac PET study
- Combination of Structure & Physiology
 - Transmurality-adjusted FDG uptake (or Tl redistribution)
- Viability Assessment with Extended Concept Needed
 - More than functional improvement