
Long-term Outcome of complete TGA: What to look for?

Hong-Ryang Kil, MD, PhD Department of Pediatrics, School of Medicine Chungnam National University, Daejeon, Korea

Long-term outcome of TGA 2013-04-20

Contents

- Atrial vs. Arterial Switch Operation
- ASO Era
- Cardiovascular outcomes
- Exercise performance
- > NeoAortic problem
- > Vasomotor function of CA

Contents

- Atrial vs. Arterial Switch Operation
- ASO Era
- Cardiovascular outcomes
- > Exercise performance
- NeoAortic problem
- > Vasomotor function of CA

Improvement in long-term survival after hospital discharge but not in freedom from reoperation after the change from atrial to arterial switch for transposition of the great arteries

Jürgen Hörer, MD,^a Christian Schreiber, MD, PhD,^a Julie Cleuziou, MD,^a Manfred Vogt, MD, PhD,^b Zsolt Prodan, MD,^a Raymonde Busch, MSc,^c Klaus Holper, MD, PhD,^a and Rüdiger Lange, MD, PhD^a

Objective: To compare survival, freedom from reoperation, and functional status between atrial switch and arterial switch operations for transposition of the great arteries.

Methods: Data from 88, 329, and 512 patients who underwent Mustard, Senning, and arterial switch operations between 1974 and 2006 were analyzed.

Results: In-hospital mortalities were 8.0% for Mustard, 4.6% for Senning, and 6.4% for arterial switch. Presence of ventricular septal defect (hazard ratio 3.3, P < .001) was the only risk factor for in-hospital mortality in multivariate analysis. Follow-up for Mustard was 22.6 ± 8.1 years, for Senning was 18.2 ± 5.7 years, and for arterial switch was 9.5 ± 5.7 years. Highest survival at 20 years was after arterial switch ($96.6\% \pm 1.3\%$), followed by Senning ($92.6\% \pm 1.5\%$) and Mustard ($82.4\% \pm 4.3\%$). Transposition with ventricular septal defect (hazard ratio 3.1, P < .001), transposition with ventricular septal defect and left ventricular outflow tract obstruction (hazard ratio 3.0, P = .029), and Mustard operation (hazard ratio 2.1, P = .011) emerged as risk factors for late death, with arterial switch a protective factor (hazard ratio 0.3, P = .010). Highest freedom from reoperation at 20 years was after Senning ($88.7\% \pm 1.9\%$), followed by arterial switch ($75.0\% \pm 6.4\%$) and Mustard ($70.6\% \pm 5.4\%$). Presence of complex transposition (hazard ratio 2.1, P < .001), previous palliative operation (hazard ratio 1.8, P = .016), surgery between 1985 and 1995 (hazard ratio 2.6, P = .002), surgery after 1995 (hazard ratio 3.5, P < .001), and Mustard operation (hazard ratio 3.3, P < .001) emerged as risk factors for reoperation.

Conclusion: Change from atrial to arterial switch led to improved long-term survival after hospital discharge but not to lower incidence of reoperation. Survival and freedom from reoperation are determined by morphology.

TABLE 1. Perioperative variables of 929 patients with transposition of the great arteries who underwent the Mustard, Senning, or arterial switch operation

	Atria	switch			
Characteristic	Mustard (n = 88)	Senning (n = 329)	Arterial switch (n = 512)	P value*	
TGA with IVS (No.)	44 (50%)	221 (64.1%)	317 (61.9%)	.633	
TGA with VSD (No.)	31 (35.2%)	71 (21.6%)	186 (36.3%)	<.001	
TGA with LVOTO (No.)	7 (8.0%)	15 (4.6%)	1 (0.2%)	<.001	
TGA with VSD and LVOTO (No.)	6 (6.8%)	22 (6.7%)	8 (1.6%)	<.001	
VSD (No.)	37 (42,4%)	93 (28.3%)	194 (37.9%)	.038	
LVOTO (No.)	13 (14.8%)	37 (11.2%)	9 (1.8%)	<.001	
Palliative operation (No.)	32 (36.4%)	25 (7.6%)	67 (31.6%)	.846	
Balloon atrial septostomy (No.)	75 (85.2%)	307 (93.3%)	354 (69.1%)	<.001	
Age at correction (y, mean \pm SD)	2.7 ± 2.4	0.8 ± 1.3	0.2 ± 0.9	<.001	
Weight at correction (kg, mean ± SD)	11.3 ± 5.3	6.5 ± 3.1	4.0 ± 3.1	<.001	
In-hospital mortality (No.)	7 (8.0%)	15 (4.6%)	33 (6.4%)	.487	

TGA, Transposition of the great arteries; IVS, intact ventricular septum; VSD, ventricular septal defect; LVOTO, left ventricular outflow tract obstruction. *Atrial switch (both Mustard and Senning operations) versus arterial switch.

	U	Univariate analysis			Multivariate analysis		
Risk factor	Hazard ratio	95% CI	P value*	Hazard ratio	95% CI	P value*	
Complex TGA	2.9	1.7-5.2	<.001				
TGA with VSD	2.5	1.4-4.3	.001	3.1	1.7-5.5	<.001	
TGA with VSD and LVOTO	2.6	1.0-6.6	.042	3.0	1.1-7.9	.029	
VSD	3.0	1.7-5.2	<.001				
Palliative operation	3.2	1.8-5.7	<.001				
Surgical period							
1985-1995	0.6	0.3-1.0	.066				
>1995	0.1	0.0-0.6	.014				
TGA with VSD							
Mustard operation	4.2	2.0-9.0	<.001				
Senning operation	2.3	1.1-4.8	.021				
Mustard operation	3.6	2.0-6.5	<.001	2.3	1.2-4.2	.011	
Arterial switch operation	0.3	0.1-0.6	.002	0.3	0.1-0.8	.010	
Age at operation >30 d	3.1	1.4-6.7	.005				

TABLE 3. Significant risk factors for late death among 874 survivors through hospitalization after the Mustard, Senning, or arterial switch operation

CI, Confidence interval; TGA, transposition of the great arteries; VSD, ventricular septal defect; LVOTO, left ventricular outflow tract obstruction. *Level of significance between the groups of dichotomous variables listed in the first column, except for the variables of surgical period 1985–1995 and surgical period >1995, for which reference is surgical period <1985.

TABLE 4. Reoperations among 874 survivors through hospitalization after the Mustard, Senning, or arterial switch operation

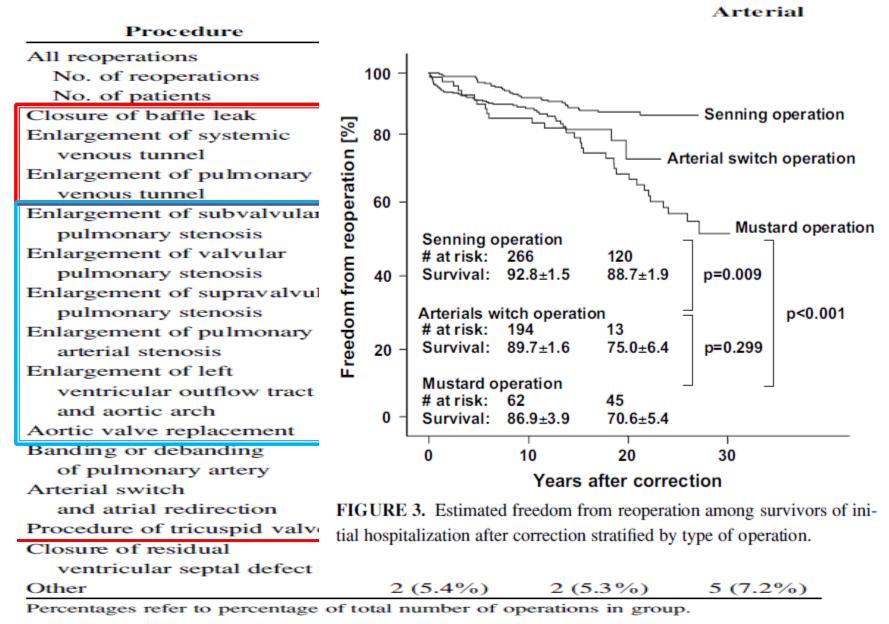


Table 1

Variable ASO (n = 28)Mustard (n = 34)p Value 23.5 ± 4.2 Body mass index 23.3 ± 3 0.82 (kg/m^2) Age (yrs) 20.6 ± 2.1 20.6 ± 3.4 0.56Age at operation (mos) 0.13(0.03 - 12.1)10.7 (1.7 - 76.2)< 0.0001*Follow-up after 20.5 ± 2.1 19.3 ± 3.7 0.14operation (yrs) New York Heart < 0.0001*Association class 2814 Т П 16 Ο ш Ο 4 Pacemaker 12 (43%) < 0.0001*0 Heart rate at rest 77 ± 12 74 ± 14 0.42(beats/min) Maximal heart rate 174 ± 15 158 ± 27 0.006*(beats/min) 113 ± 17 118 ± 11 Systolic blood pressure 0.20 at rest (mm Hg) Maximal systolic blood 180 ± 26 178 ± 24 0.83 pressure during exercise (mm Hg) 29.5 ± 5.9 0.05^{*} Vo_{2max} (ml/kg/min) 26.5 ± 5.4 Vo_{2max} (% of predicted) 80 ± 16 0.007* 69 ± 16 Respiratory exchange 1.14 ± 0.11 1.09 ± 29 0.02^{*} ratio Forced expiratory 84 ± 18 95 ± 20 0.026^{*} volume in 1 second (% of predicted) N-terminal pro-brain 42(18 - 323)172(26 - 1,018) $< 0.0001^{*}$ natriuretic peptide (ng/ml)

Group characteristics according to the technique used to repair transposition of the great arteries

Claudia Junge, Am J Cardiol 2013

The change from the atrial to the arterial switch

- Improved long-term survival
- Improved functional status

NYHA Fc I atrial 66-93% vs ASO all most all

- Not to lower incidence of reoperation.
- Both survival and freedom from reoperation are determined by the morphology.

Contents

- Atrial vs. Arterial Switch Operation
- ASO Era
- Cardiovascular outcomes
- > Exercise performance
- > NeoAortic problem
- > Vasomotor function of CA

Cardiovascular Outcomes After the Arterial Switch Operation for D-Transposition of the Great Arteries

- 400 ASO patients
 1983–1999, Boston
 Children Hospital
- F-U post ASO, years 18.7years
- IVS 59.5%, VSD 38.3%
 TB anomaly 2.3%

Characteristic	All Patients n=400
Age,* days	5 (3, 10)
Weight, kg	3.5±0.8
Height, cm	51.3±4.5
Associated malformations, n (%)	
Aortic arch anomaly [†]	26 (6.5)
Multiple VSDs	29 (7.2)
LVOT gradient ≥50 mm Hg	6 (1.5)
Abnormal AVV attachment [‡]	6 (1.5)
Coronary anatomy, n (%)	
Normal	264 (66.0)
Circumflex from RCA	72 (18.0)
Single RCA	17 (4.3)
Single LCA	7 (1.8)
Inverted	10 (2.5)

Paul Khairy, Circulation 2013

Table 2. Surgical and Catheter-Based Interventions in Perioperative Survivors After the Arterial Switch Operation (n=374)

	n (%)
Surgical Reintervention	
Coronary intervention	2 (0.5)
Aortic reconstruction at anastomosis	2 (0.5)
Pulmonary artery reconstruction/plasty at anastomosis	25 (6.7)
Aortic valve plasty	4 (1.1)
Aortic valve replacement	2 (0.5)
Subaortic stenosis resection	5 (1.3)
Aortic arch/coarctation surgery	5 (1.3)
Pulmonary valve plasty	4 (1.1)
Subpulmonary stenosis/right ventricular outflow tract resection	1 (0.3)
Left pulmonary artery plasty	6 (1.6)
Right pulmonary artery plasty	6 (1.6)
Ventricular septal defect closure	1 (0.3)
Atrial septal defect closure	3 (0.8)
Mitral valvuloplasty	3 (0.8)
Permanent pacemaker	3 (0.8)
Implantable cardioverter-defibrillator	3 (0.8)
Total	48 (12.8)
Catheter-based intervention	
Aortic plasty/stenting at anastomosis	5 (1.3)
Pulmonary artery plasty/stenting at anastomosis	33 (8.8)
Aortic valve plasty	1 (0.3)
Aortic coarctation dilation/stenting	4 (1.1)
Pulmonary valve plasty	13 (3.5)
Right pulmonary artery dilation/stenting	20 (5.3)
Left pulmonary artery dilation/stenting	28 (7.5)
Superior vena cava dilation/stenting	2 (0.5)
Closure of aortopulmonary collaterals	6 (1.6)
Right ventricle to pulmonary artery homograft dilation	3 (0.8)
Intracoronary thrombolysis	1 (0.3)
Cavotricuspid isthmus ablation for typical atrial flutter	2 (0.5)
Total	60 (16.0)

Cardiovascular surgical or catheter-based intervention

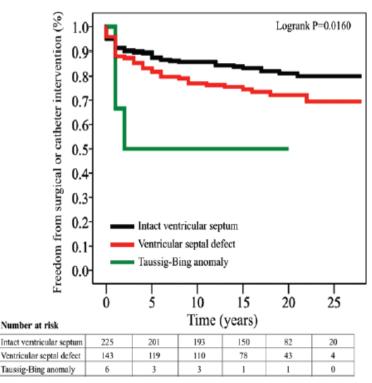


Figure 2. Freedom from cardiovascular surgical or catheterbased interventions. The Kaplan–Meier curves depict freedom from cardiovascular surgical or catheter-based interventions after the arterial switch operation, according to whether patients had an intact ventricular septum, ≥ 1 ventricular septal defect, or a Taussig-Bing anomaly. Table 3. Factors Associated With Cardiovascular Surgical or Catheter-Based Intervention

Characteristic	Hazard Ratio	95% CI	Р
Univariable			
Ventricular septal defect	1.59	1.03, 2.47	0.0376
Taussig-Bing variant	2.80	0.88, 9.18	0.0819
Aortic arch anomaly	3.73	2.02, 6.88	<0.0001
Coronary anomaly	1.37	0.88, 2.12	0.1636
Weight at time of arterial switch (per 1 kg reduction)	0.48	0.33, 0.70	0.0001
Height at time of arterial switch (per 1 cm reduction)	0.96	0.90, 1.02	0.1383
Multivariable			
Aortic arch anomaly	3.25	1.69, 6.27	0.0004
Weight at time of arterial switch (per 1 kg reduction)	0.61	0.41, 0.91	0.0144

Combined CV outcome in early survivor

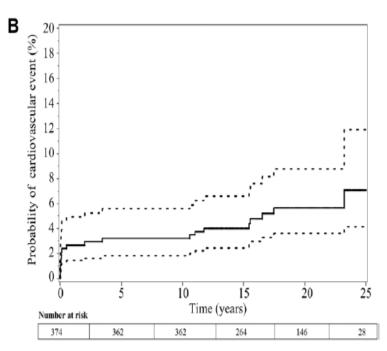
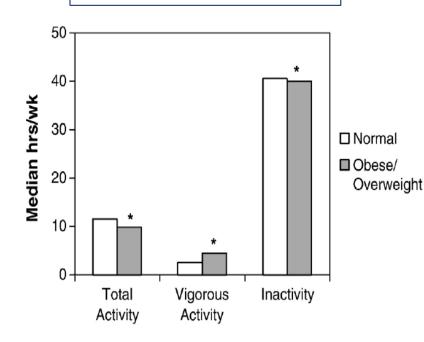


Figure 3. Cumulative probability of arrhythmia or sudden death (A) and of the combined cardiovascular outcome (B). Cumulative probability of arrhythmia or sudden death (A) and of the combined cardiovascular outcome (B) is plotted using the product-limit method. The dotted curves represent upper and lower 95% confidence limits.

Table 4.Factors Associated With the CombinedCardiovascular Outcome in Early Survivors

Characteristic	Hazard Ratio	95% CI	Р
Univariable			
Single right coronary artery	5.12	1.50, 17.50	0.0092
Post-operative course in intensive care unit ≥7 days	2.79	0.94, 8.30	0.0651
Post-operative low cardiac output syndrome	8.08	1.86, 35.06	0.0052
Post-operative ventricular tachycardia	4.12	0.55, 30.86	0.1687
Chest open postoperatively	2.51	0.90, 6.95	0.0777
Multivariable			
Single right coronary artery	4.58	1.32, 15.90	0.0166
Post-operative low cardiac output syndrome	6.93	1.57, 30.62	0.0107

Cl indicates confidence interval.


Functional capacity on latest F-U

New York Heart Association functional class, n (%)

Class I	290 (97.3)
Class II	8 (2.7)
Class III or IV	0 (0)
Peak heart rate, bpm	180±18
Peak percent heart rate predicted, %	90.7±7.0
Heart rate reserve, bpm	101±21
Chronotropic index, %	83.9±10.9
Respiratory exchange ratio (RER)	1.16 ± 0.09
Peak oxygen uptake, mL/kg/min	35.1±7.6
Percent maximum predicted peak oxygen uptake, %	86.1±15.1
Recognized comorbidities	
Coronary artery disease, n (%)	19 (5.2)
Hypertension, n (%)	12 (3.3)
Dyslipidemia, n (%)	2 (0.5)

Physical activity and restriction

106 ASO Median age 14.2 yr

Activity level. *P = NS comparing OB/OW patients to normal-weight patients for total activity, vigorous activity, and inactivity. Hours per week of inactivity was significantly greater compared to hours per week of total activity in both normal-weight patients and OB/OW patients (P < .001, see text).
 Table II. Activity restriction

	Normal-weight		P
Any activity			
Cardiologist	27%	27%	NS
Parent	42%*	38%*	NS
Aerobic activity			
Cardiologist	8%	6%	NS
Parent	26 % [†]	33%‡	NS

Obesity was not found to be related to activity restriction or early feeding practices
Obesity and associated comorbidities may pose additional cardiovascular risk in ASO

Contents

Atrial vs. Arterial Switch Operation

ASO Era

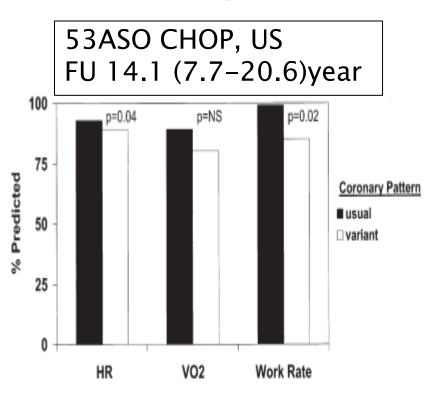
- Cardiovascular outcomes
- Exercise performance
- > NeoAortic problem
- > Vasomotor function of CA

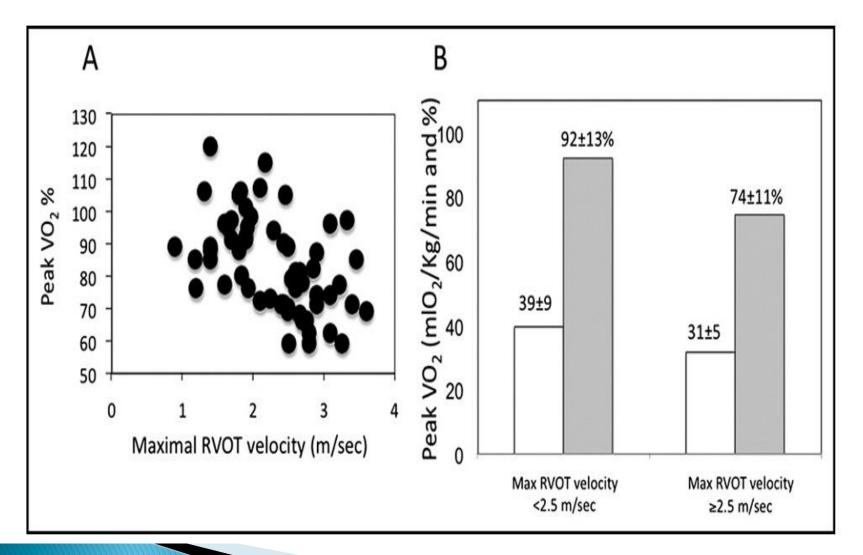
Coronary artery pattern and age impact exercise performance late after the arterial switch operation

TABLE 3. Predictors of exercise performance

	P value	
	Univariate	Multivariate
Lower maximum heart rate		
VSD	.009	.004
Variant coronary pattern	.04	.03
Lower raw VO ₂	.001	
Lower percent predicted VO ₂	.004	
Concurrent procedure w/ASO	.02	
Lower percent predicted VO ₂		
Longer follow-up time	.001	<.001
VSD	.03	.05
Variant coronary pattern	.1	.09
Lower maximum heart rate	.004	
Concurrent procedure w/ASO	.007	

VSD, Ventricular septal defect; ASO, arterial switch operation; $VO_{2'}$ peak oxygen consumption.




Figure 1. Peak exercise data. *HR*, Heart rate; VO_{2^r} oxygen consumption; *NS*, not significant.

Pasquali SK, JTCS 2007

Exercise performance, ASO

- Potential for sympathetic denervation asso.
 with chronotrophic incompetence
- Length of follow up after ASO
- Abnormal CA reserve after ASO
 - alter balance between myocardial oxygen supply and demand.
- Physical deconditioning

Correlation VO2% and RVOTO

Exercise performance in TGA vs healthy control

Variable	Control Group $(n = 15)$	TGA Group $(n = 15)$	p Value
VO _{2peak} (ml/kg/min)	47.4 ± 6.4 (39.3–58.4)	41.1 ± 6.6* (32.1–55.5)	0.013
VO _{2peak} lean body mass (ml/kg/min)	$58.2 \pm 10.0 \ (46.1 - 85.4)$	$50.5 \pm 7.1^{*} (32.1 - 55.5)$	0.021
VO _{2peak} (% of predicted)	94.6 ± 12.1 (75.6–111.5)	$81.4 \pm 10.9 * (63.0 - 103.8)$	0.004
Respiratory quotient	$1.04 \pm 0.03 \ (0.98 - 1.09)$	$1.03 \pm 0.04 \ (0.98 - 1.12)$	0.46
Peak workload (W)	$179.3 \pm 60.5 (96 - 320)$	$154.1 \pm 61.6 (80 - 312)$	0.27
Peak workload (W/kg)	$3.7 \pm 0.5 (2.7 - 4.7)$	$3.1 \pm 0.6^{*} (2.5 - 4.2)$	0.005
Peak heart rate (beats/minute)	$189 \pm 9 (168 - 200)$	180 ± 14 (155–202)	0.045
Heart rate after 1 min (beats/minute)	$153 \pm 17 (113 - 178)$	149 ± 16 (126–179)	0.40
Heart rate after 3 min (beats/minute)	$120 \pm 16 (83 - 146)$	118 ± 14 (89–146)	0.80

Data are presented as mean \pm SD (minimum to maximum range). * p <0.05.

Elsje van Beek, Am J Cardiol 2010

Long-term outcome of TGA 2013-04-20

- Reduced exercise capacity is relatively common in children and young adult, ASO
- Presence of RVOT obstruction seems to have on exercise capacity
- associated with large increase of Qp distention of blood vessel.
- Anatomic obstruction might become more relevant during exercise
- Complete cardiac reinnervation could take >5-10yr

Contents

Atrial vs. Arterial Switch Operation

ASO Era

- Cardiovascular outcomes
- > Exercise performance
- > NeoAortic problem
- > Vasomotor function of CA

Long-Term Outcomes of the Neoaorta After Arterial Switch Operation for Transposition of the Great Arteries

Jennifer G. Co-Vu, MD,* Salil Ginde, MD,* Peter J. Bartz, MD, Peter C. Frommelt, MD, James S. Tweddell, MD, and Michael G. Earing, MD

Department of Pediatrics, Division of Pediatric Cardiology, and Department of Internal Medicine, Division of Cardiovascular Medicine, and Department of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin

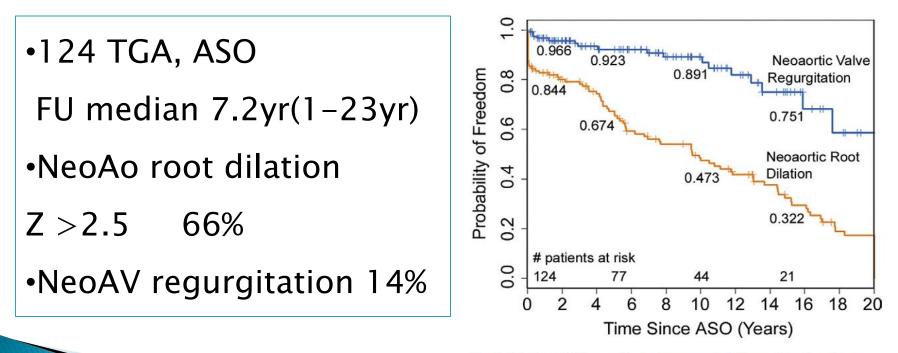
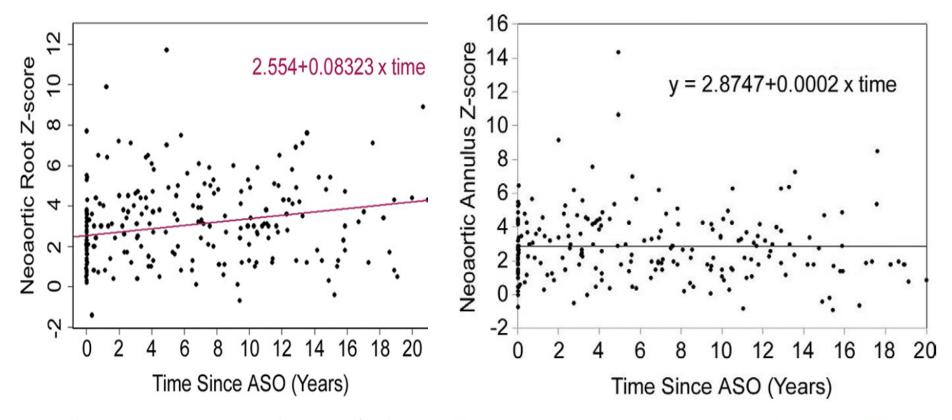



Fig 1. Kaplan-Meier analysis shows probability of freedom from neoaortic root dilation (z score > 2.5) and neoaortic regurgitation (at least moderate regurgitation) after arterial switch operation (ASO).

NeoAo Root and annulus Z score

Fig 3. The neoaortic root z score increased over time after the arte rial switch operation (ASO) at a rate of 0.08 per year.

Fig 5. The neoaortic annulus z score increased over time after arterial switch operation (ASO) at a rate of 0.0002 per year.

Long-term outcome of TGA 2013-04-20

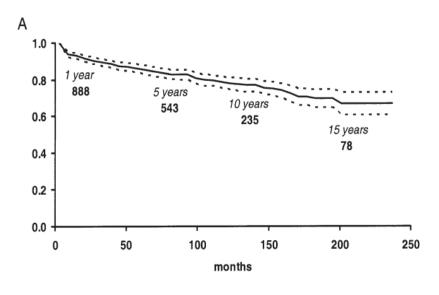
Aortic Valve Regurgitation After Arterial Switch Operation for Transposition of the Great Arteries

Incidence, Risk Factors, and Outcome

Jean Losay, MD, Anita Touchot, MD, Andre Capderou, MD, PHD, Jean-Dominique Piot, MD, Emre Belli, MD, Claude Planché, MD, PHD, Alain Serraf, MD, PHD

Le Plessis-Robinson, France

•1,156 TGA, ASO survivor, 1982-2000


•FU median 76.2months

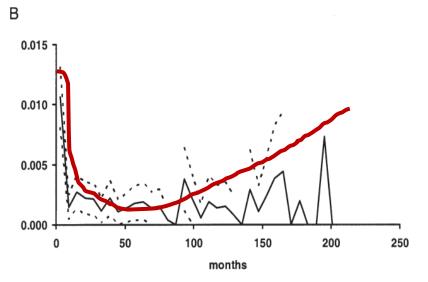

presence of a ventricular septal defect (VSD) or AR at discharge multiplied the risk by 2 and 4, respectively. Freedom from AR was 77.9% and 69.5% at 10 and 15 years, respectively; hazard function for AR declined rapidly and slowly increased thereafter. Reoperation from AR was done in 16 patients with one death, valvuloplasty being unsuccessful. Freedom from reoperation for AR was 97.7% and 96.8% at 10 and 15 years, respectively; hazard function slowly increased from 2 to 16 years. Higher late mortality was not associated with AR. **CONCLUSIONS** After ASO, AR was observed and was related to VSD with attending high pressure and flow and AR at discharge. Progression of AR was slow, but incidence increased with follow-up. Reoperation for AR was rare. Late aortic valve function warrants long-term monitoring. (J Am Coll Cardiol 2006;47:2057–62) © 2006 by the American College of Cardiology Foundation

Table 2. Risk Factors for AR

	With AR	Without AR	р
Univariate analysis: whole population			
Complex TGA (%) (TGA with VSD and TB)	25.8	74.2	< 0.0001
TGA with VSD	22.3	77.7	< 0.0001
Associated arch anomaly (%): IIA or CoA	29.2	70.8	< 0.0001
Ao/PA size ≥ 1.5 (%)	23.6	76.4	< 0.0152
Prior PAB (%)	29.3	70.7	< 0.0003
Age at ASO (day)	66.3 ± 320.6	25.9 ± 68.8	< 0.0005
AR at discharge (%): any grade	34.9	65.1	< 0.0001
Univariate analysis: TGA and IVS			
Prior PAB (%)	28.0	9.8	0.0053
AR at discharge (%): any grade	23.2	8.3	< 0.0001
Univariate analysis: TGA with VSD			
Taussig-Bing anomaly	38.9	22.3	0.0043
AR at discharge (%): any grade	45.0	14.2	< 0.0001
Multivariate analysis			
Complex TGA	1.9		< 0.0014
AR at discharge	4.1		< 0.0001

AR = aortic regurgitation; CoA = coarctation, IIA = interrupted aortic arch; PA = pulmonary artery; other abbreviations as in Table 1.

Figure 2. (A) Actuarial estimate of freedom from aortic regurgitation (AR) (grade \geq I) in the 1,156 hospital survivors after the arterial switch operation. Numbers indicate number of patients observed at the beginning of an interval. (B) Hazard function for AR in 1,156 survivors after the arterial switch operation. Dotted lines = 95% confidence interval.

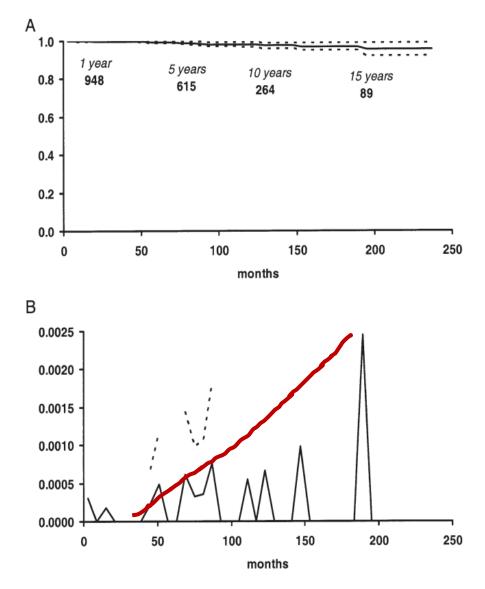


Figure 4. (A) Actuarial survival free of reoperation for aortic regurgitation for the 1,156 survivors. Numbers indicate number of patients observed at the beginning of interval. (B) Hazard function for reoperation for aortic regurgitation in the 1,156 survivors. Dotted lines = 95% confidence interval. Abbreviations as in Figure 2.

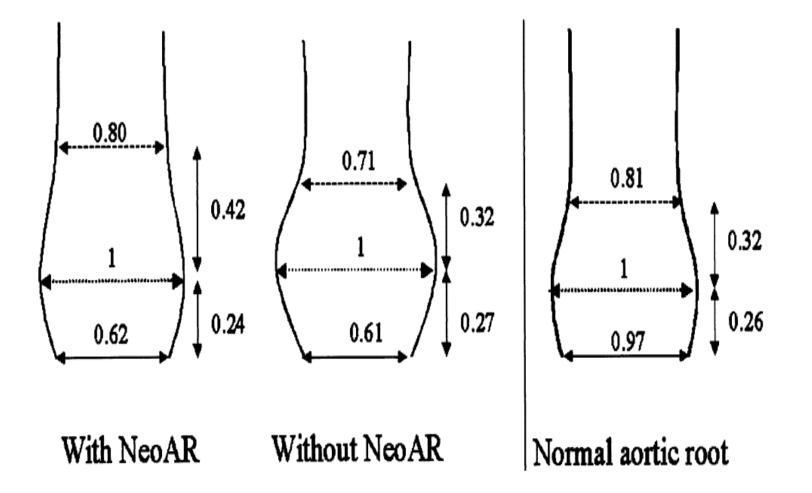
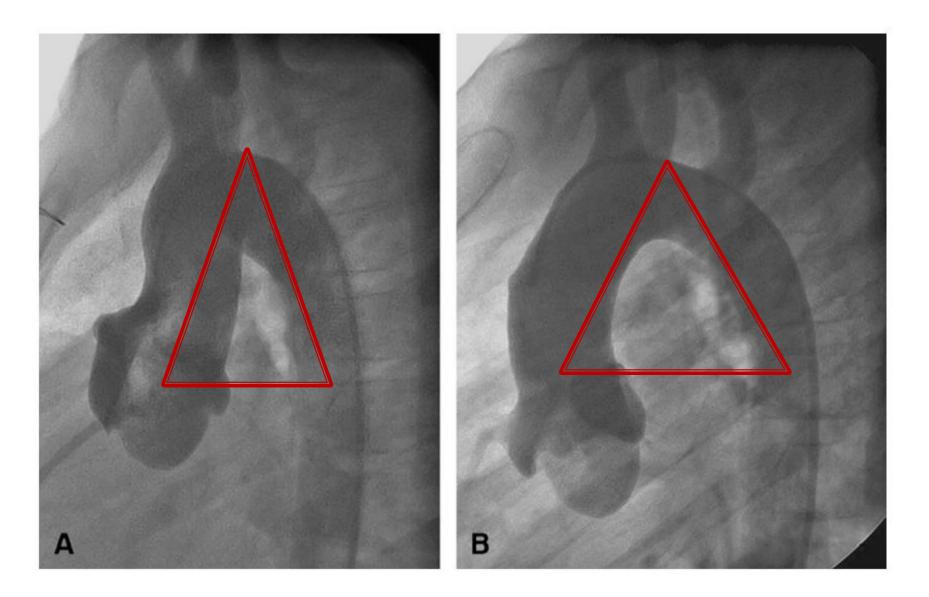



Figure 5. Shape of the neoaortic root of the patients with and without NeoAR. The normal human aortic root (modified from Kunzelman and colleagues¹¹) is shown for comparison. The sinus diameter is represented by a value of 1, and all other values are represented by a fraction of this number. The figures are not in scale and are meant only to give information about the shape of the root.

Abnormal Vasomotor Function of the Epicardial Coronary Arteries in Children Five to Eight Years After Arterial Switch Operation An Angiographic and Intracoronary Doppler Flow Wire Study Maria Giulia Gagliardi, MD, PHD,* Rachele Adorisio, MD,* Filippo Crea, MD,† Paolo Versacci, MD,* Roberto Di Donato, MD,* Stephen P. Sanders, MD, FACC* *Rome, Italy*

• 19 TGA, ASO vs. 6 control Age 5.4yr

•Quantitative assessment of epicardial CA NG, adenosine, acethylcholine

Epicardial coronary arteries fail to dilate normally in children after ASO, and the calculated coronary flow volume reserve is consequently reduced. (J Am Coll Cardiol 2005;46:

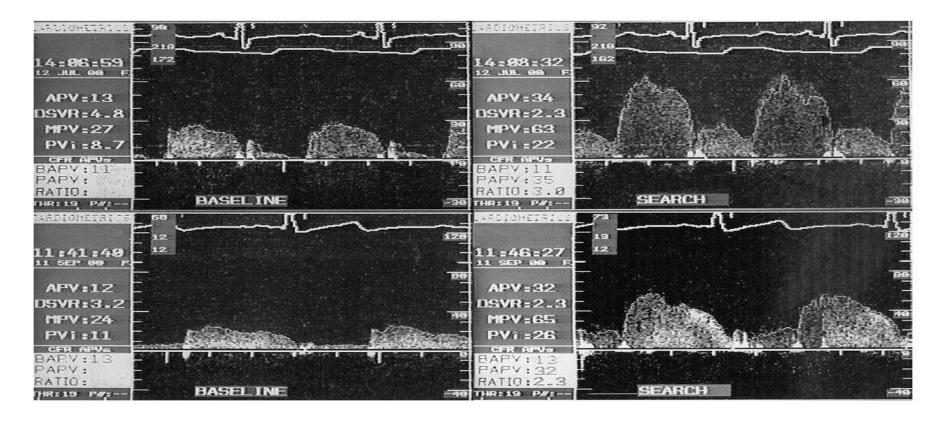
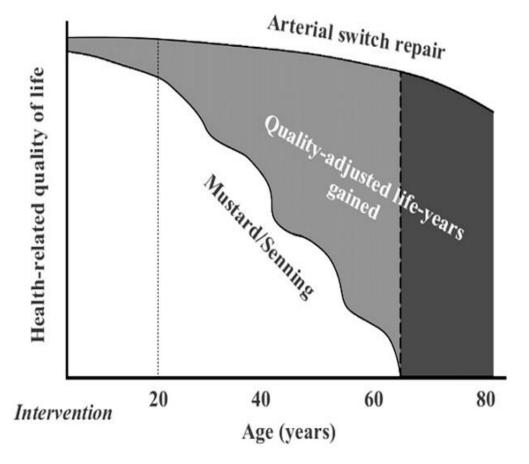



Table 6. Extrapolated Data for CFR Calculated With Administration of Adenosine

	CSA (mm ²)		Flow Volumes (ml/min)		
	Before NTG	After NTG	Before Adn	After Adn	CFR
ASO group Control group	6.4 ± 3.9 3.8 ± 1.4			$\begin{array}{c} 181.5 \pm 198.1 \\ 133.6 \pm 46.5 \end{array}$	

Adn = adenosine; other abbreviations as in Table 5.

Theoretical gain in Quality-adjusted life years(QALY) from ASO as compared atrial switch operation

•Low long-term Cx rate for ASO and near normal life expectancy. •Gain is likely to become larger after 3rd-5th decade. •QALY gain due to the extension of life expect to become apparent in later life

Summary

- The prevalence of long-term sequelae after ASO has remained relatively low compared to atrial switch repair
- A great number of patients require cardiac intervention or present with significant residual hemodynamic lesions, commonly affecting the right ventricular outflow tract and pulmonary arteries.

Summary

- Clinically relevant coronary complications are
 - infrequent and still, not support the need for routine invasive coronary assessment in young population.
- It would seem premature to decree on the long-term outcome of ASO.
- Close surveillance of these patients in specialized
 - centers is, however, strongly advisable

