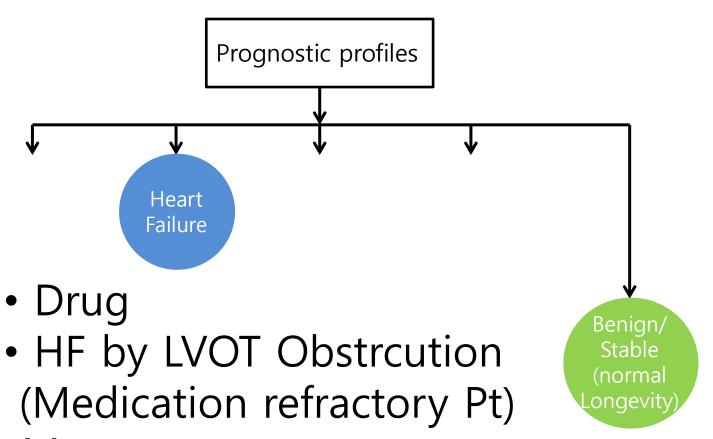
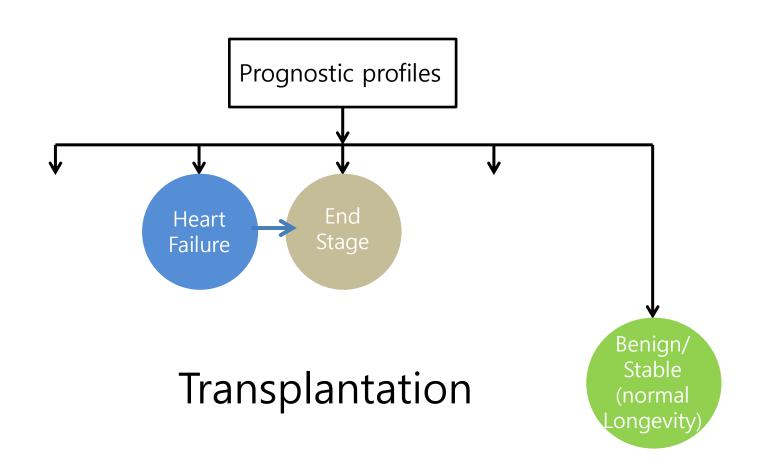
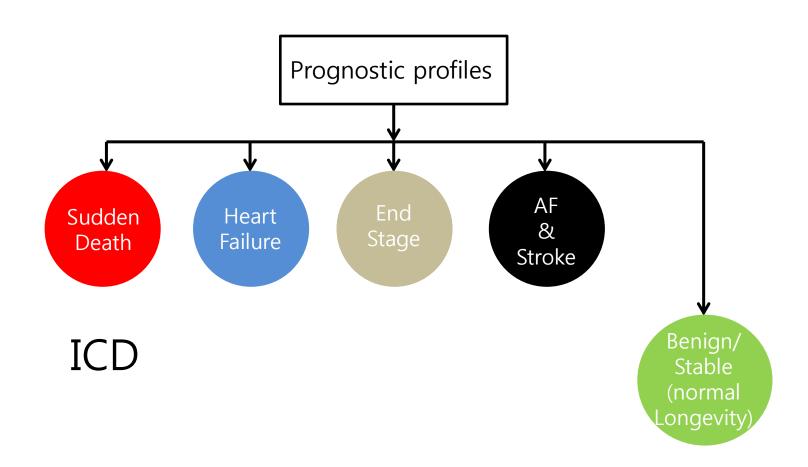

ICD – First


인하대 병원 심장내과 김대혁

HCM

- HCM is heterogenous cardiac disease with a diverse clinical presentation and course in all age groups.
- HCMP is the most common cause of SCD in young people.
- SCD usually occur in previously healthy individuals without Sx or as the initial clinical manifestation of the disease.
- Annual SCD rate is <1% among HCM


- -Myectomy
- -Alcohol septal ablation

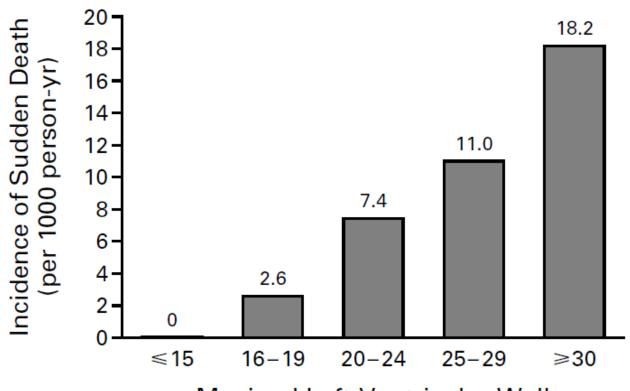

Definition of Dynamic LVOT obstuction

Hemodynamic State Conditions		Outflow Gradient*		
Basal obstruction	Rest	≥30 mm Hg†		
Nonobstructive	Rest	<30 mm Hg		
	Physiologically provoked	<30 mm Hg		
Labile obstruction	Rest	<30 mm Hg†		
	Physiologically provoked	≥30 mm Hg†		

^{*}Either the peak instantaneous continuous wave Doppler gradient or the peak-to-peak cardiac catheterization gradient, which are equivalent in hypertrophic cardiomyopathy.73,74

†Gradients ≥50 mm Hg either at rest or with provocation are considered the threshold for septal reduction therapy in severely symptomatic patients.

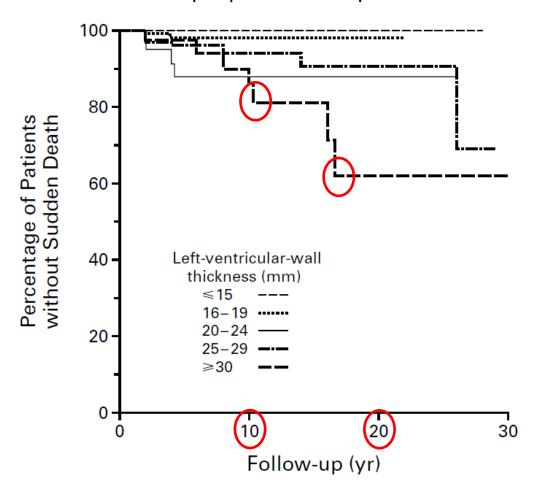
Risk factor stratification for SCD


Identification of high risk patients and effort at prevention of SCD represent important clinical challenges in HCM.

Risk Factors for SCD in HCM

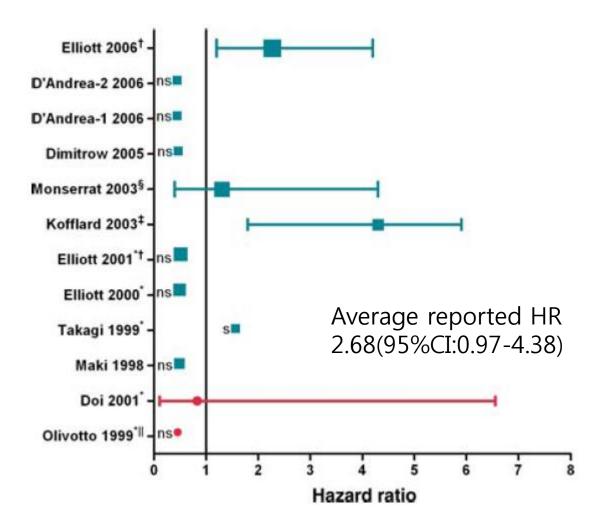
Major	Possible in Individual Patients
Cardiac arrest (ventricular fibrillation)	Atrial fibrillation
Spontaneous sustained ventricular tachycardia	Myocardial ischemia
Family history of premature sudden death	LV outflow obstruction
Unexplained syncope	High-risk mutation
LV thickness greater than or equal to	Intense (competitive) physical
30 mm	exertion
Abnormal exercise blood pressure	
Nonsustained ventricular tachycardia (Holter)	

Relation between LVH and SCD


Risk of Sudden Death in 480 Patients with HCMP

Maximal Left-Ventricular-Wall Thickness (mm)

Relation between LVH and SCD

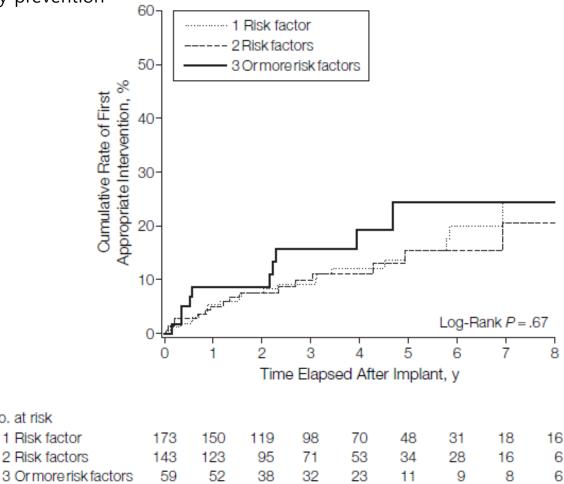

Kaplan-Meier Estimate of the proportions of patient without SCD

Syncope in HCM

- Syncope is a complex entity since several mechanism may be responsible for this Sx.
- Multiple cause of Syncope
 - SVT,
 - Bradyarrhythmia,
 - Ventricular arrhythmia,
 - Abnormal vascular response
 - Exercise-related LVOTO
 - Ischemia
 - Neurally mediated syncope
 - Orthostatic hypotension

Relation between Unexplained Syncope and SCD

Relation between number of risk factors and SCD


Cumulative rate for first ICD intervention in pt with 1,2, or 3 or more risk factors who had received

devices for primary prevention

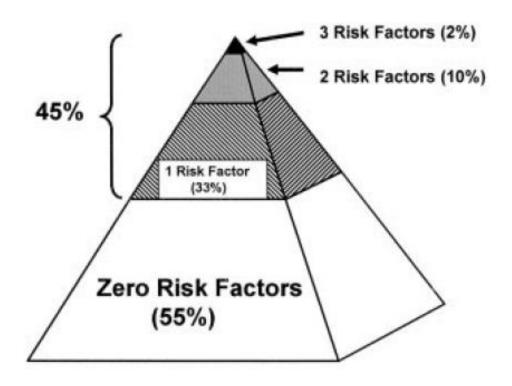
No. at risk

1 Risk factor

2 Risk factors

SCD in HCM

 SCD in HCM is caused mainly by Ventricular arrhythmia that can be effectively treated by ICD


Mechanism of SCD

- Substrate: anatomical substrate
 GDE on CMR: myocardial fibrosis and disarray
- Trigger
 - Myocardial ischemia
 - LVOTO
 - Change in vascular architecture
 - Atrial fibrillation/enhanced AVN conduction

Mechanism of Myectomy for SCD Prevention in HCM

- Removal of LVH
 - Removal of anatomical substrate
 - Reduction of myocardial oxygen demand, coronary vascular resistance and capillary density.
- Reduction of LVOTO
 - Prevention severe reduction in CO leading to electromechanical dissociation
 - Prevention ventricular arrhythmia through myocardial ischemia

Percentage of Risk factors

 Almost 5% of pt without any risk factors experience sudden cardiac death.

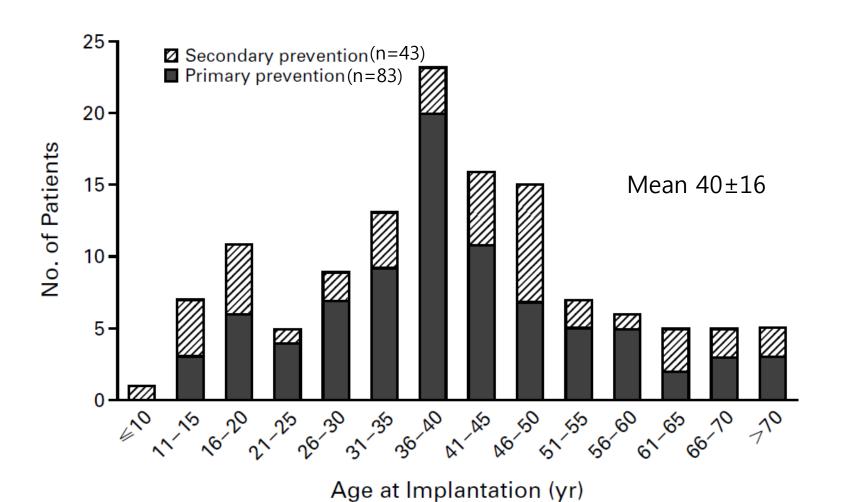
Mechanism of SCD

- Substrate: anatomical substrate
 GDE on CMR: myocardial fibrosis and disarray
- Trigger
 - Myocardial ischemia
 - LVOTO
 - Change in vascular architecture
 - Atrial fibrillation/enhanced AVN conduction
 - Until now, We don't know exact mechanism

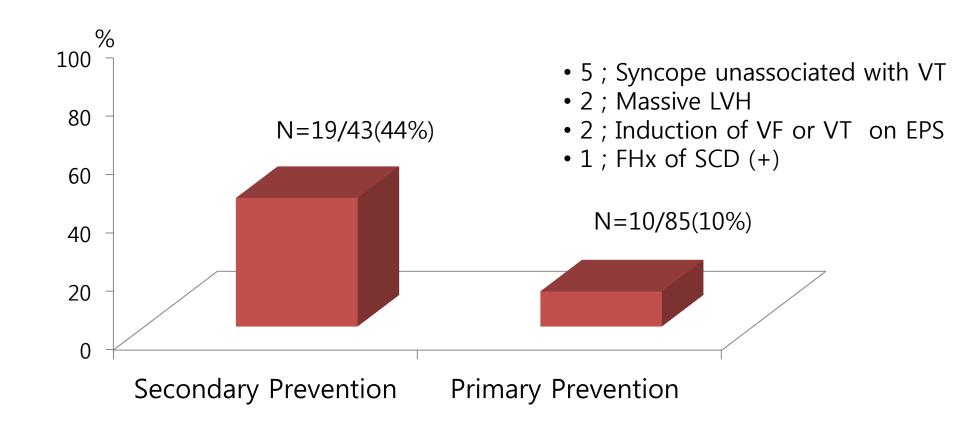
Prevention of SCD: ICD

- ICD is the gold standard treatment for both the primary and secondary prevention of SCD in HCM.
- SCD is rare in ICD recipients and they receive appropriate device therapies that terminate ventricular arrhythmias.

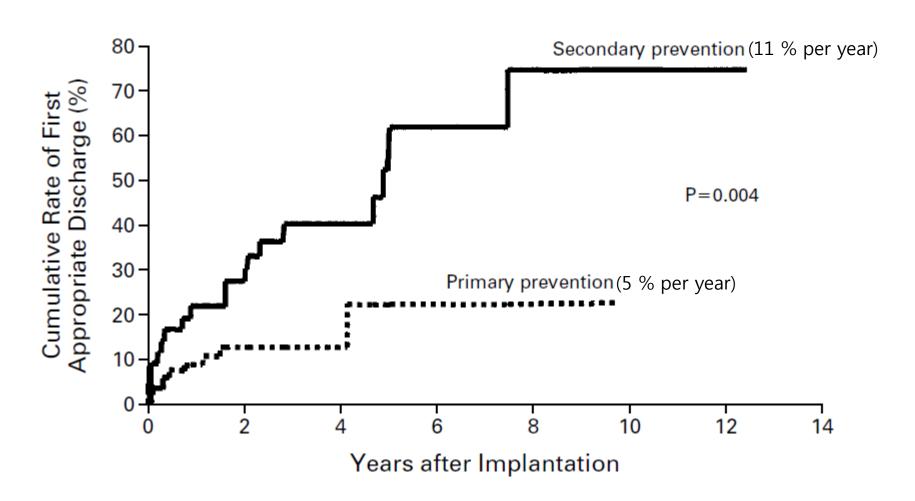
Efficacy of ICD in HCM Pt with high risk for SCD

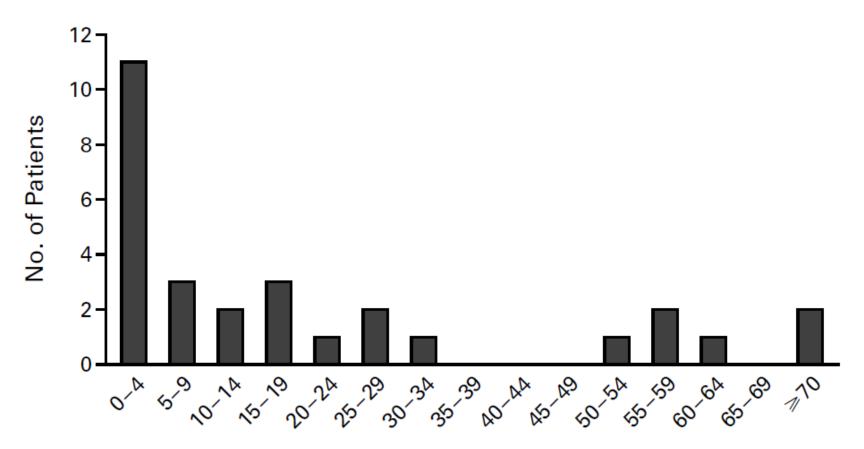

Study	Patient number, setting	Implant dates	Mean age at implant (years)	NYHA I/II	Age ≤16 years	Male sex	Primary prevention	Mean follow- up (years)
Primo et al ⁹	13, 2 centres	NA	48±13	NA	Yes	62%	15%	2.2
Maron et al7	128, 19 centres	1984-1998	40 ± 16	86%	Yes	69%	66%	3.1
Begley et al4	132, 1 centre	1987-2001	34±17	NA	Yes	61%	64%	4.8
Jayatilleke <i>et al</i> ⁵	22, 1 centre	1997—2003	NA	NA	NA	NA	82%	2.9
Marin et al 12¶	45, 3 centres	2000-2005	43±20	91%	Yes	62%	60%	2.5
Woo et al ¹⁰	61, 1 centre	1996-2003	46±18	NA	Yes	66%	82%	3.3
Kaski et al ¹¹	22, 1 centre	1993-2006	14	84%	Yes	59%	77%	1.7
Maron et al ⁸ **	506, 42 centres	1986-2003	42±17	87%	Yes	64%	76%	3.7
Lin <i>et al</i> ⁶	181, 1 centre	1988-2005	44±17	NA	Yes	62%	86%	4.9
Syska et al ¹³	104, 1 centre	1996-2006	36±17	95%	NA	45%	75%	4.6
The Heart Hospital	334, 1 centre	1992—2009	42±14	92%	No	62%	92%	3.8

Efficacy of ICD in HCM Pt with high risk for SCD

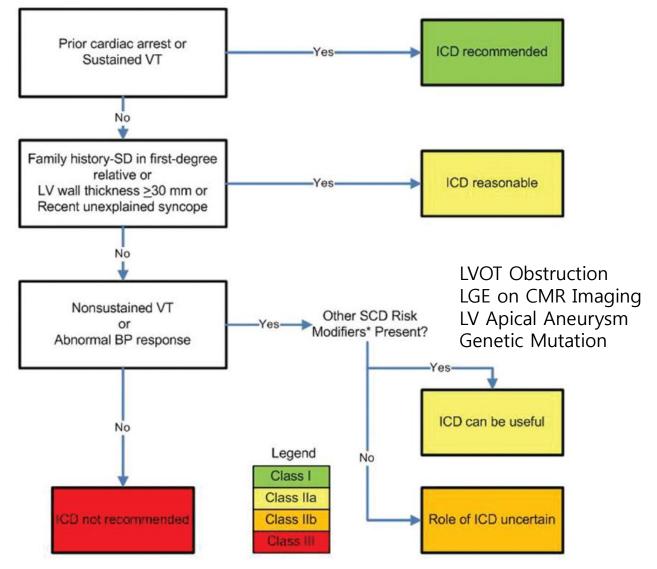

	Study	Appropriate shock rates*	Primary prevention appropriate shock rates	Secondary prevention appropriate shock rates	Inappropriate shocks (% of patients)	Implant complications† (% of patients)	Cardiovascular mortality‡
	Primo et al ⁹	21% at 4 years	NA	NA	23	NA	0
√	Maron et al7	7%/year	5%/year	11%/year	25	14	NAS
	Begley et al ⁴	25% at 5 years	16% in 5-years	36% in 5-years	23	10	3% deaths, 0.8% transplants
	Jayatilleke <i>et al</i> ⁵	11%/year	10%/year	17%/year	9	5	NA
	Marin et al 12 ¶	7%/year	1.6%/year	11.1%/year	27	2.2	4% deaths
	Woo et al 10	4%/year	NA	NA	33	13#	2% deaths, 2% transplants
	Kaski et al ¹¹	13%/year, 20% at 5 years	4.1%/year	71%/year	18	18	0
	Maron et al ⁸ **	5.5%/year, 23% at 5 years	3.6%/year	10.6%/year	27	12	4% deaths, 2% transplants
	Lin et al ⁶	4%/year	NA	NA	23	26	4% deaths, 2% transplants
	Syska et al ¹³	5.6%/year	4.0%/year	7.9%/year	34	24	3% deaths, 1% transplant
	The Heart Hospital	2.3%/year, 13% at 5 years	2.0%/year	4.3%/year	16	18	3% deaths, 3% transplants

SCD is rare


Population of Patients


Appropriate Discharges

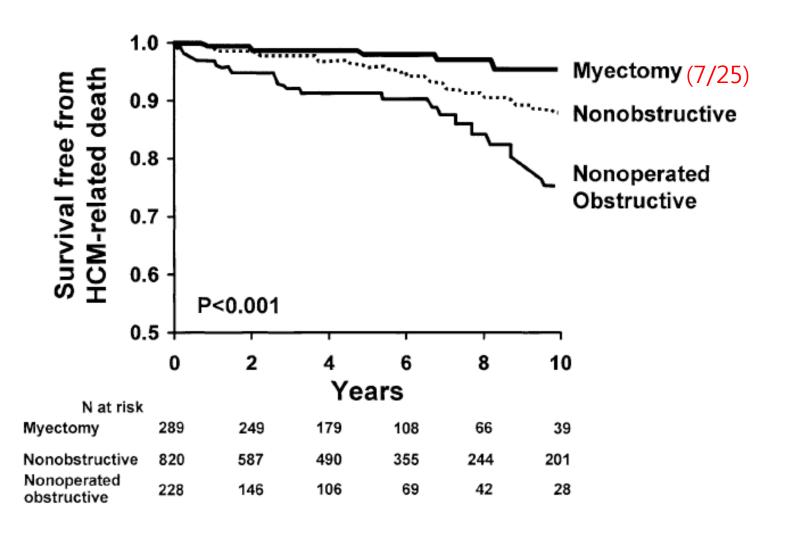
Estimated Cumulative Rate of Appropriate Discharge

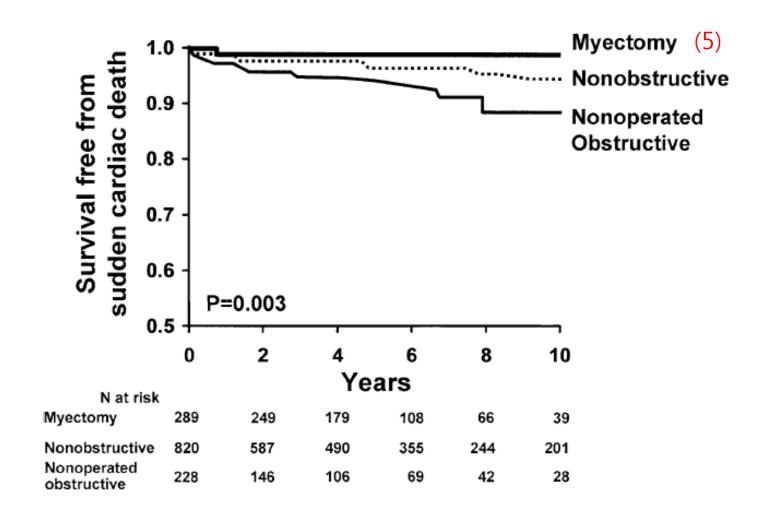


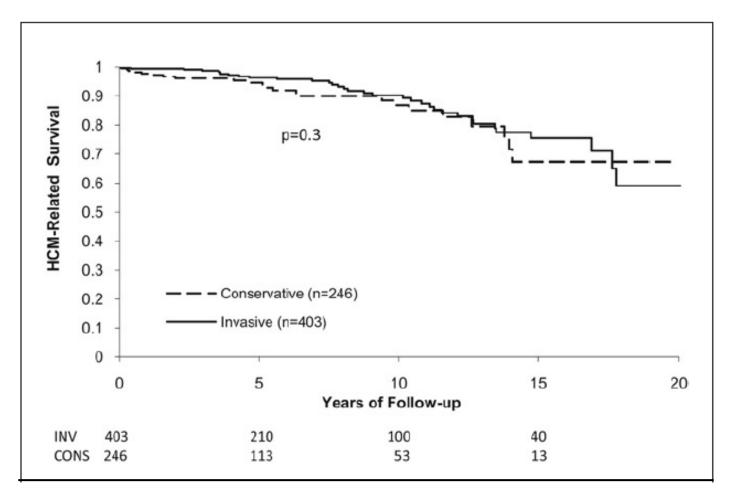
Interval between implantation of ICD and First Discharge

Interval between Implantation and Discharge (mo)

ICD Indication in Pt with HCM


2011 ACCF/AHA guideline. Circulation 2011;124:e783-e831

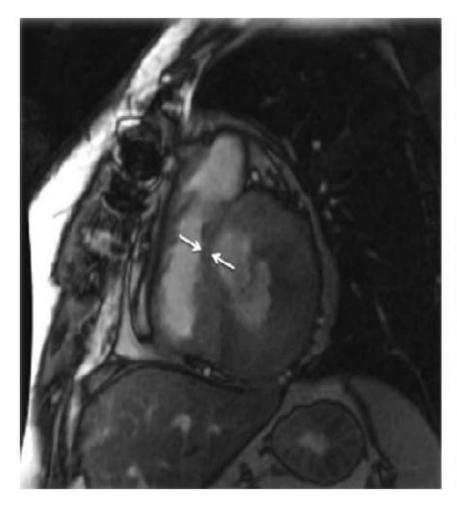

Conclusion

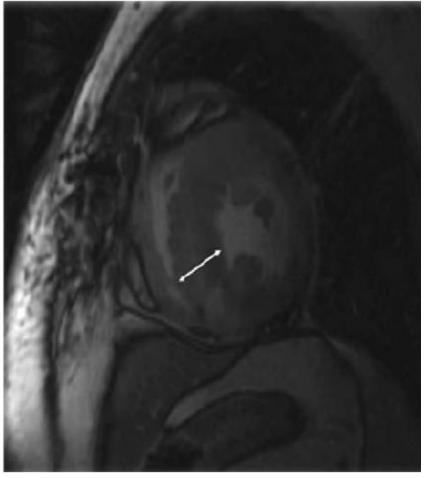

- There are many data which are strongly in favor of ICD implantation in high risk HCM.
- ICD provide highly effective discharges in primary prevention of SCD in HCM, significantly reduce mortality, improve long-term survival and increase qualityadjusted life expectancy.

Rebuttal

1. Long-Term Effect of Myectomy Remains Controversial

Total of 55 patient(8.5%) received an ICD for primary or secondary prevention


	Conservative Group (n = 246)	Invasive Group (n = 403)	Total (n = 649)
Mortality			
HCM-related mortality	19 (7.7)	28 (6.9)	47 (7.2)
Sudden cardiac death	8 (3.3)	7 (1.7)	15 (2.3)
Non-HCM-related death	16 (6.5)	8 (2.0)	24 (3.7)
Overall mortality	35 (14.2)	36 (8.9)	71 (10.9)
Equivalents of mortality			
Resuscitated cardiac arrest	2 (0.8)	4 (1.0)	6 (0.9)
Appropriate ICD discharge*	1 (0.4)	3 (0.7)	4 (0.6)
Total mortality and equivalents of mortality	38 (15.4)	43 (10.7)	81 (12.5)


2. Complete Removal of Anatomical Substrate is Impossible.

Case Report

- 41/M(A), 45/M(B)
- Exertional dyspnea, chest tightness, palpitation, 1 episode of syncope
- FHx(-)
- TTE: maximal wall thickness 32mm
- LVOT gradient 143mmHg

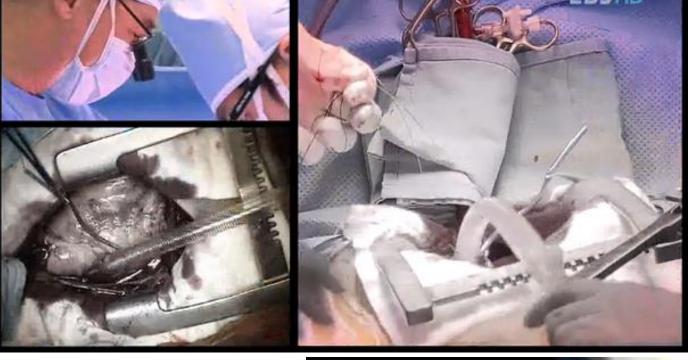
CMR after Septal Myectomy

Basel level(A)

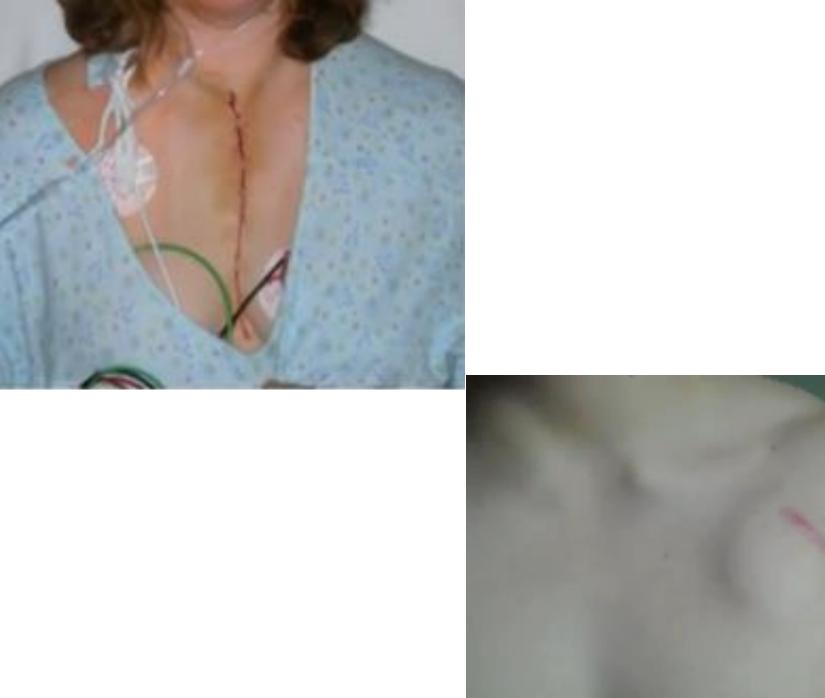
Mid level(A)
Journal of Cardiology Case 2011;3:e65-e67

Natural Hx

Case A;
 ICD implantation 4 month after OP
 Appropriate shock, 6 month later


Case B;
 SCD 5 month after OP

3. The Recommendation for Septal Reduction Therapy is until limited


Recommendation-Invasive Tx

- 1. Septal reduction therapy should be performed only by experienced operators* in the context of a comprehensive HCM clinical program and only for the treatment of eligible patients with severe drug-refractory symptoms and LVOT obstruction.†²⁷² (Level of Evidence: C)
 - * Experienced operators are defined as an individual operator with a cumulative case volume of at least 20 procedures or an individual operator who is working in a dedicated HCM program with a cumulative total of at least 50 procedures (Section 6.2.2.3).
 - † Eligible patients are defined by all of the following:
 - a. Clinical: Severe dyspnea or chest pain (usually NYHA functional classes III or IV) or occasionally other exertional symptoms (such as syncope activity or quality of life despite optimal medical therapy.
 - b. Hemodynamic: Dynamic LVOT gradient at rest or with physiologic provocation ≥50 mm Hg associated with septal hypertrophy and SAM of the mitral valve.
 - c. Anatomic: Targeted anterior septal thickness sufficient to perform the procedure safely and effectively in the judgment of the individual operator.

4. Patients and Physicians would prefer the less-invasive percutaneous procedure to open heart surgery

Complication

 Septal myectomy
 Overall risk of procedure highly depends on the experience of the operator

Complications	n (%)	338 adult from 1978 to2002
Early (within 30 days of myectomy)		
Postoperative death	5 (1.5)	
Isolated myectomy group (n=249)	2 (0.8)	
Myectomy and any concomitant surgical procedure(s) (n=89)	3 (3)	
Permanent pacemaker	21 (6)	
Ventricular septal defect	6 (2)	
Early postoperative AF	102 (30)	
Late (>30 days after myectomy)		
Subsequent surgical procedures		
Repeat myectomy	1 (0.3)	
Ventricular septal defect repair	1 (0.3)	
Mitral valve replacement	8 (2)	
Pericardiectomy	1 (0.3)	
Implantable cardioverter defibrillator	14 (4)	
Cardiac transplantation	5 (1.5)	
Serious cardiovascular events		
Congestive heart failure requiring hospitalization	44 (13)	
Stroke	20 (6)	
Arterial thromboembolic events	5 (1.5)	
Cardiovascular cause of death		
Early postoperative death (during initial hospitalization for myectomy)	5 (1.5)	
Sudden cardiac death	13 (4)	
After myocardial infarction	2 (0.6)	
Associated with congestive heart failure	15 (4)	
After stroke	7 (2)	
Early after cardiac transplantation	1 (0.3)	
Total cardiovascular deaths	43 (13)	Circulatin.2005;111:2033-2041

Complication

ICD implantation
 This procedure is ordinary procedure for general electrophysiologist

Complication	No of patients (%)
Pneumothorax (at ICD implant)	1 (<1)
Pericardial effusion (at ICD implant)	3 (2)
Pocket haematoma	4 (2)
Early (≤ 1 month)	3
Late (with generator change)	1
Upper extremity deep venous thrombosis	1 (<1)
Lead revision	24 (13)
Acute (≤ 24 h)	6
Chronic (>24 h)	18
ICD infection	8 (5)
Early (≤ 1 month)	1
Late (>1 month)	7
ICD revision for high defibrillation threshold testing	6 (3)
Subcutaneous array	4
Lead revision	1
Generator change	1
Inappropriate shocks	42 (23)
Atrial fibrillation	20
Sinus tachycardia	16
Device malfunction	6

The procedure-related death is very rare.

Conclusion

 ICD provide highly effective discharges in primary prevention of SCD in HCM.

 In high risk, obstructive HCM patient with drug refractory, severe Sx,
 Combination of Myectomy and ICD implantation may be benefit