Biopolymer gel implants in heart failure

경북대학교병원 순환기내과 양 동 헌

American Heart Association Scientific Sessions 2013

A Multicenter, Randomized Study Assessing the Efficacy of Left Ventricular Augmentation with Algisyl-LVR in the Treatment of Advanced Heart Failure Patients with Ischemic and Non-ischemic Cardiomyopathy:

Interim Results of the AUGMENT-HF Study

Douglas L Mann, Hani N Sabbah, Andy Hinson, Stefan D Anker, Andrew Coats, Randall J Lee, Gabriel Cristian, Dinu Dragomir, Enrico Pusineri, Ottavio Alfieri, Antonello Gavazzi, Benno Rensing, Maurizio Volterrani, Anthony Dart, Luca Bettari, on behalf of the AUGMENT-HF Investigators

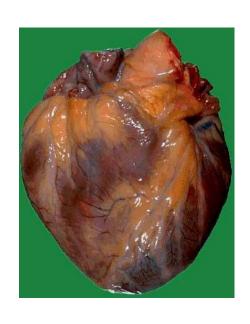
Funded by LoneStar Heart, Inc.

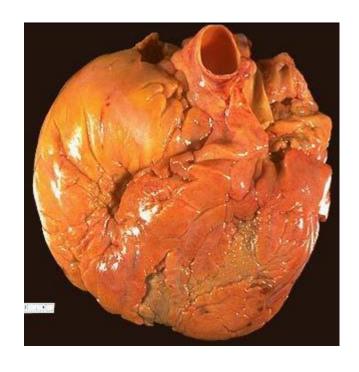
Contents

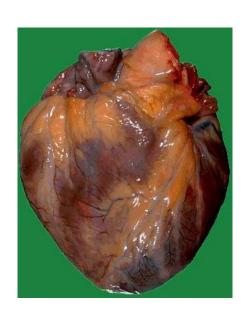
Remodeling

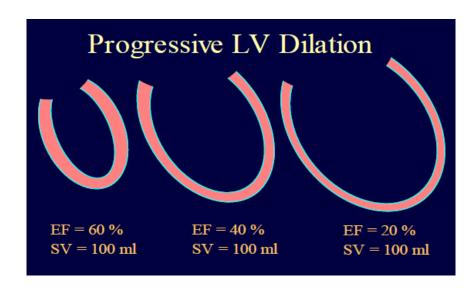
Reverse remodeling

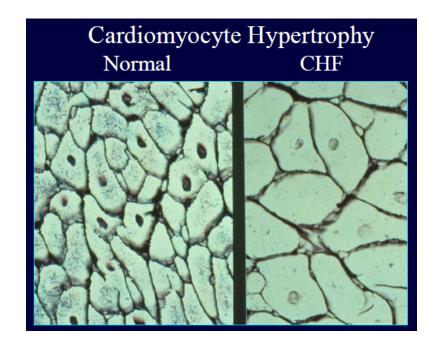
Biopolymer gel implants

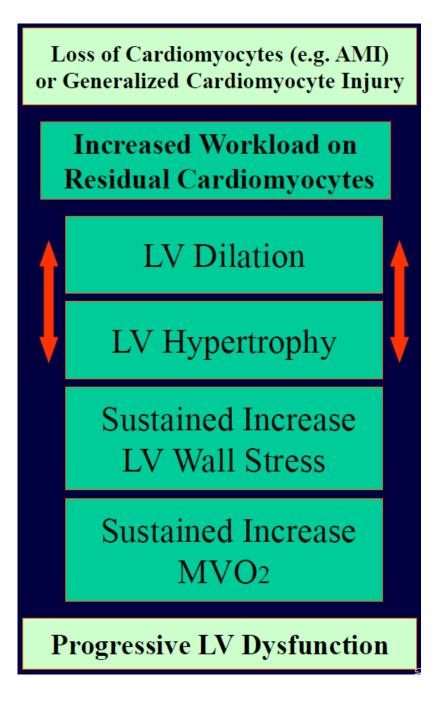

Remodeling & Recovery

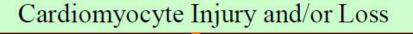



Normal




CHF covered





Global LV Remodeling

Chamber Dilation

Chamber Sphericity

Electrical Remodeling

AP Duration

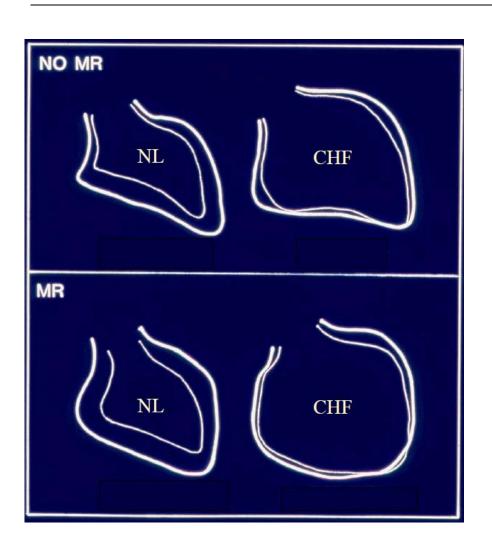
AP Dispersion

Cellular Remodeling

Hypertrophy

Reactive Fibrosis

Transcription


Translation

Molecular Remodeling

Cardiomyocyte Injury and/or Loss

Increased LV sphericity

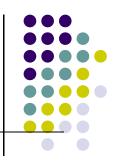
LV dilation + Sphericity

- Higher wall stress
- Higher MVO₂
- Abnormal distribution of fiber shortening
- Greater blunted response to exogenous catecholamines

And associated with

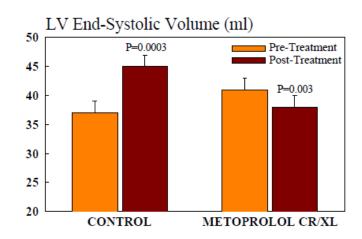
- Functional MR
- Lower exercise capacity
- Higher CHF score
- Worse long-term survival

심부전의 치료


Reverse Remodeling - Recovery

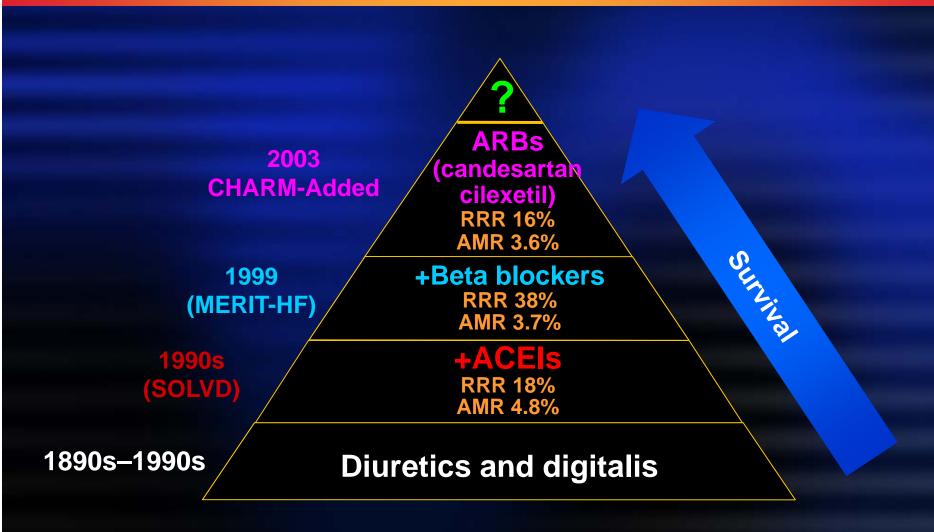
- Anti-remodeling drugs
- Device

- LVAD
- Sugical
- Cell therapy


Reverse Remodeling - Recovery

Metoprolol CR/XL in Dogs With Heart Failure

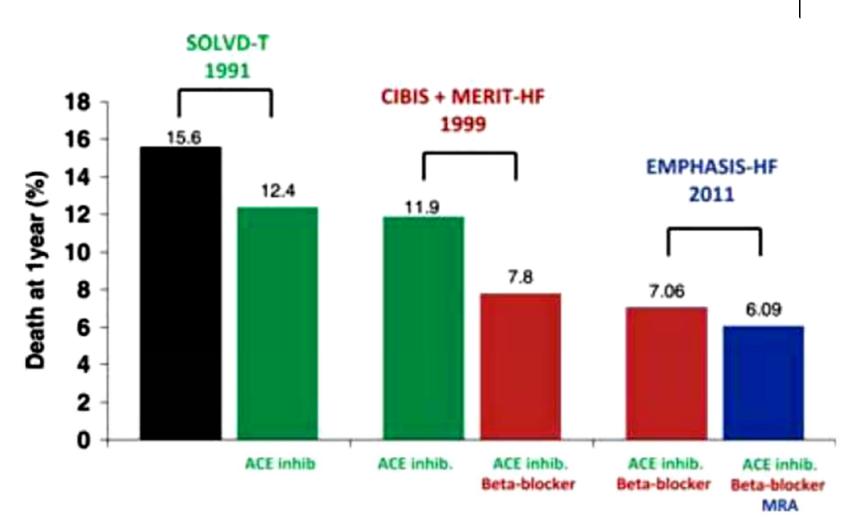
LV Ejection Fraction (%) Pre-Treatment Post-Treatment P=0.0001 P=0.0002 T CONTROL METOPROLOL CR/XL


Metoprolol CR/XL in Dogs With Heart Failure

	Normal	HF-Control	HF + Metoprolol
VFIF (%) Cap/cell ODD (μm)	3.7 ± 0.1 1.0 ± 0.0 8.9 ± 0.2	14.2 ± 0.8 * 0.89 ± 0.04 * 11.9 ± 0.2 *	$9.7 \pm 0.3 \dagger$ $1.08 \pm 0.0 \dagger$ $10.3 \pm 0.3 \dagger$
MCSA (μm²)	409 ± 10	$687 \pm 26*$	$561 \pm 4\dagger$

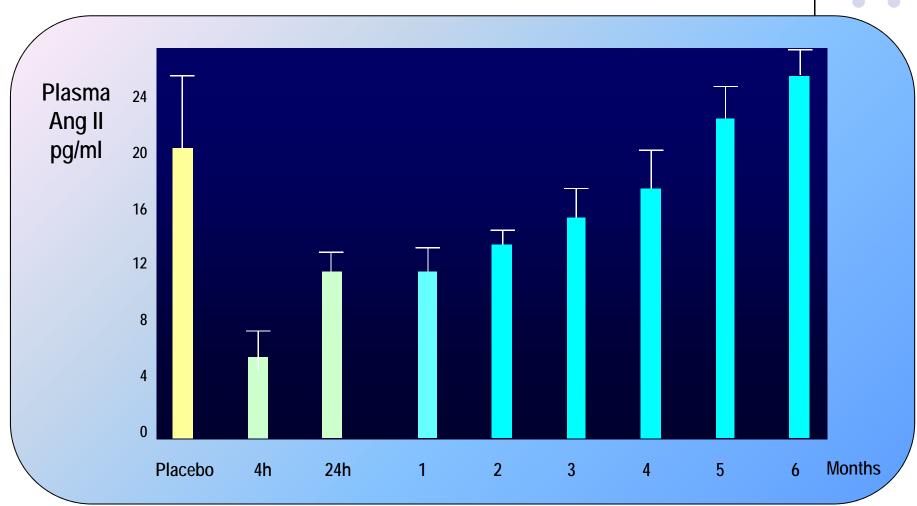
^{*=}p<0.05 vs. Normal; †=p<0.05 vs. HF-Control

Historical Advances in Heart Failure Treatment


McMurray JJV. *Lancet* 2003;362 (9386):777-81

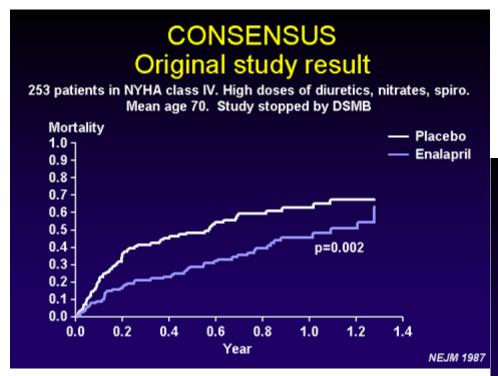
MERIT-HF Study Group. *Lancet* 1999;353(9169):2001-7

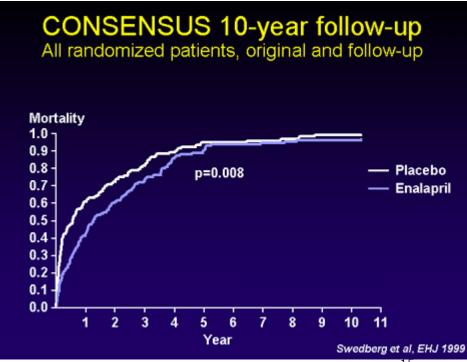
SOLVD Investigators. *N Engl J Med* 1991;325(5):293-302


Drugs for HF treatment

ACE escape

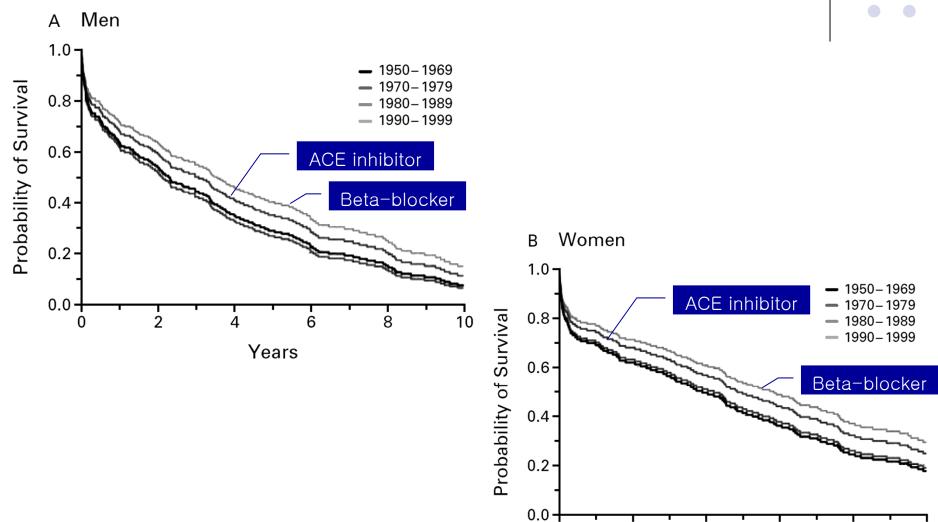
Aldosterone Breakthrough During ARB




	Before	3 Months	6 Months	12 Months	15 Months
SBP (mm Hg)	163 ± 15	132 ± 13*	128 ± 12*	124 ± 11*	125 ± 11*
DBP (mm Hg)	87 ± 8	$76 \pm 7*$	77 ± 4	73 ± 4	77 ± 6
HR (beats/min)	74 ± 5	74 ± 5	75 ± 5	73 ± 4	78 ± 4
$PRA(ng/mL \cdot h)$	1.1 ± 0.4	$2.5 \pm 0.6*$	$2.5 \pm 0.8*$	$2.8 \pm 0.7*$	$2.6 \pm 0.7*$
PAC (pg/mL)	98 ± 7.8	$69 \pm 8.9*$	72 ± 7.4*	$71 \pm 9.4*$	$80 \pm 8.9*$
HbA1c (%)	6.8 ± 0.7	6.6 ± 0.8	6.7 ± 0.6	6.7 ± 0.8	6.8 ± 0.6
Serum K (mEq/L)	4.5 ± 0.5	4.6 ± 0.8	4.6 ± 0.9	4.5 ± 0.7	4.6 ± 0.7
, P ,					

Characteristic	Breakthrough (+)	Breakthrough (-)
Number (men/women)	21 (11/10)	74 (36/38)
Age (y)	63 ± 11	61 ± 10
SBP (mm Hg)	129 ± 15	132 ± 15
DBP (mm Hg)	74 ± 6	76 ± 8
Na (mEq/L)	143 ± 1.8	142 ± 2.1
K (mEq/Ĺ)	4.5 ± 0.5	4.6 ± 0.8
BUN (mg/dL)	16 ± 2.1	17 ± 2.7
Cr (mg/dL)	1.0 ± 0.3	0.9 ± 0.3
FPG (mg/dL)	129 ± 22	131 ± 28
HbA _{1c} (%)	6.8 ± 0.5	6.9 ± 0.7
Urinary Na excretion (mEq/day)	159 ± 42	152 ± 66
Urinary K excretion (mEq/day)	43 ± 10	42 ± 15
PRA (ng/mL·h)	2.4 ± 0.9	2.6 ± 1.0
PAC (pg/mL)	111 ± 10	71 ± 7.4*
24-h Ccr	72 ± 21	78 ± 20

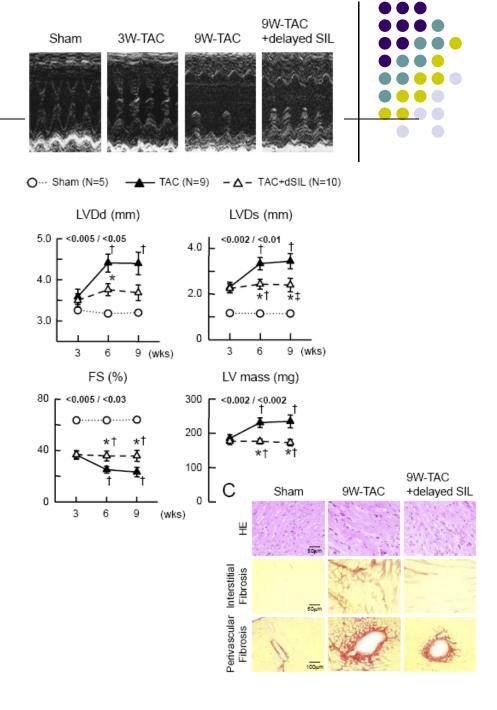
Ceiling effect of ACEI



Age-adjusted survival of CHF

8

10

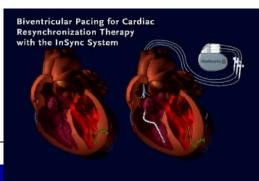

2

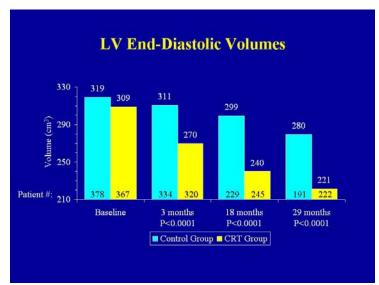
Years

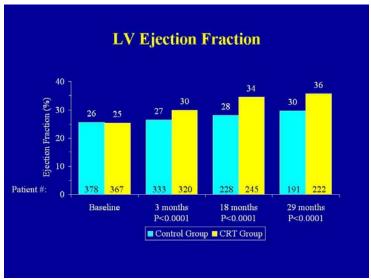
Drug's trials

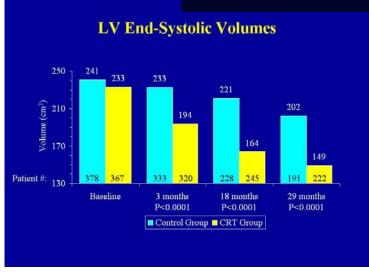
 phosphodiesterase type 5A (PDE5A) inhibition

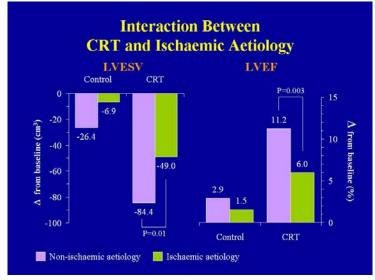
recombinant human relaxin-2

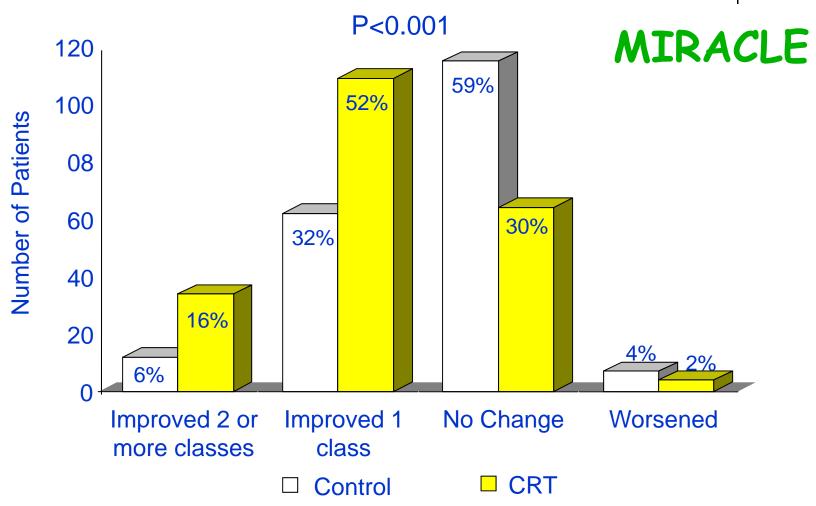

Reverse Remodeling - Recovery

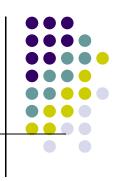



- Anti-remodeling drugs
- Device
- LVAD
- Sugical
- Cell therapy

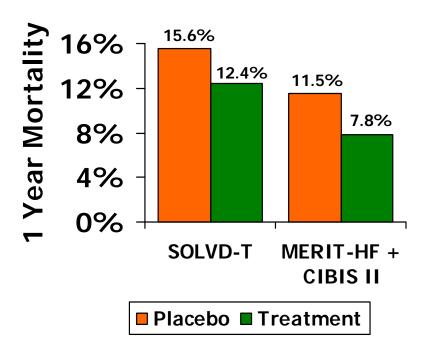

Reverse remodeling effects of CRT

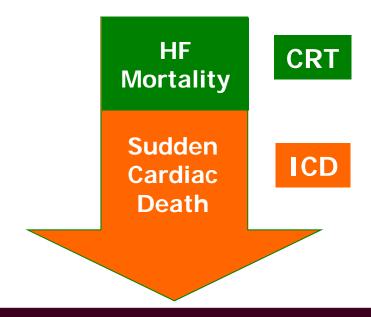






Clinical Responders to CRT




Reduced Mortality in HF

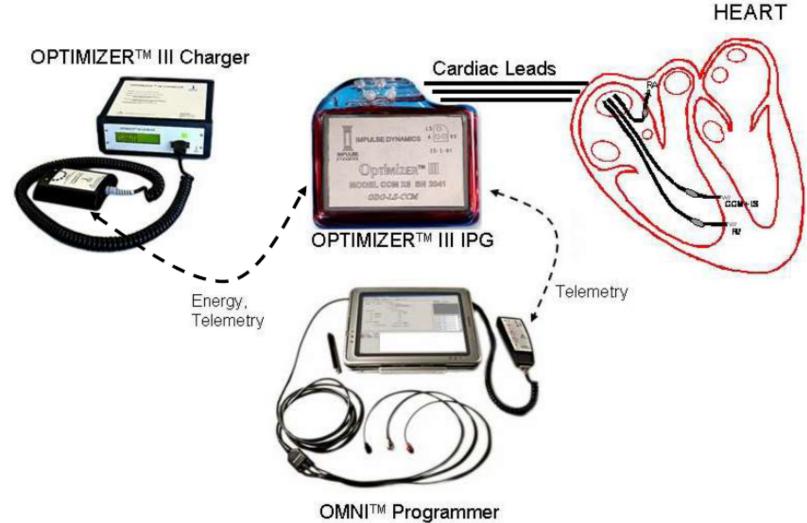
ACE-I & Beta Blockade Reduce Mortality

Further Reduction with CRT + ICD for Higher Risk Patients

Patient selection criteria

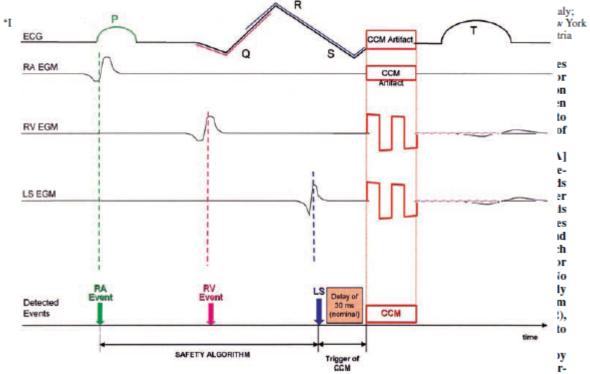
Devices for HF management

Monitoring device


- Implantable hemodynamic monitor (IHM)
- Pulmonary artery pressure monitoring device
- LA pressure monitoring

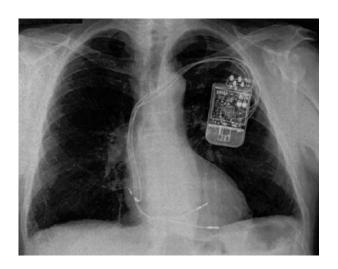
• Therapeutic device

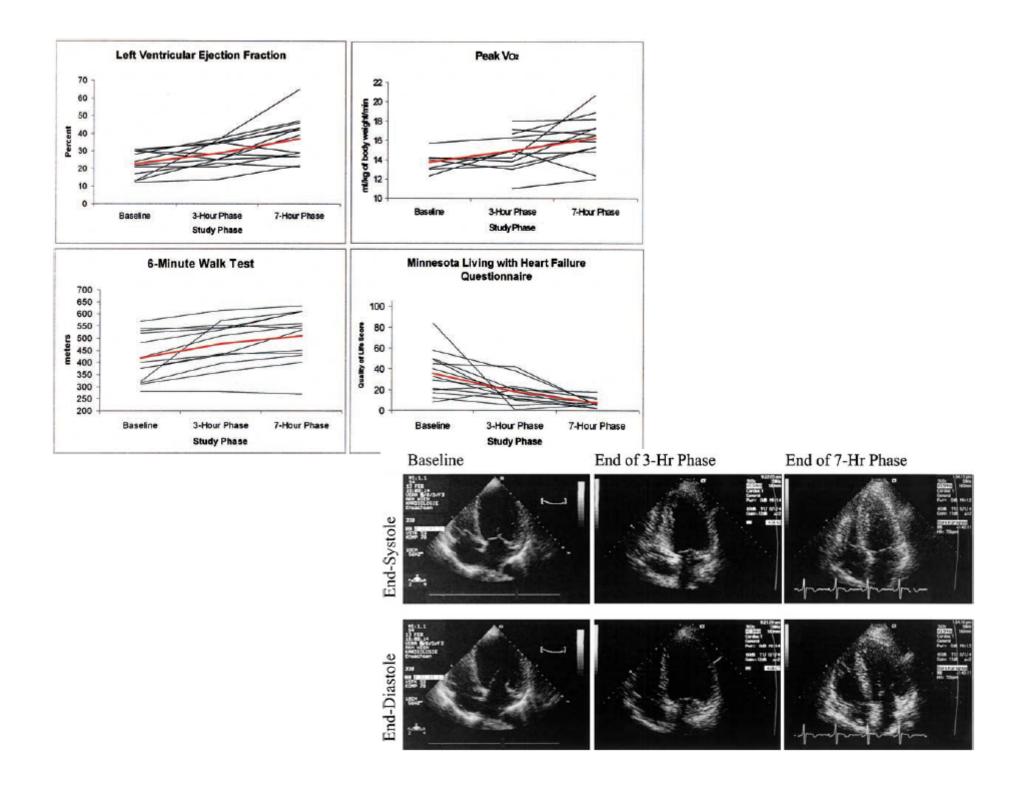
- Implantable cardiac defibrillator (ICD)
- Cardiac resynchronization therapy (CRT)
- Cardiac contractility modulation (CCM)
- Vagal nerve stimulation
- Transvenous phrenic nerve stimulation for CSA
- Mechanical circulatory support (MCS)
 - Ventricular assist device (VAD)
 - Total artificial heart (TAH)


CCM: Optimizer III system

First Human Chronic Experience with Cardiac Contractility Modulation by Nonexcitatory Electrical Currents for Treating Systolic Heart Failure: Mid-Term Safety and Efficacy Results from a Multicenter Study

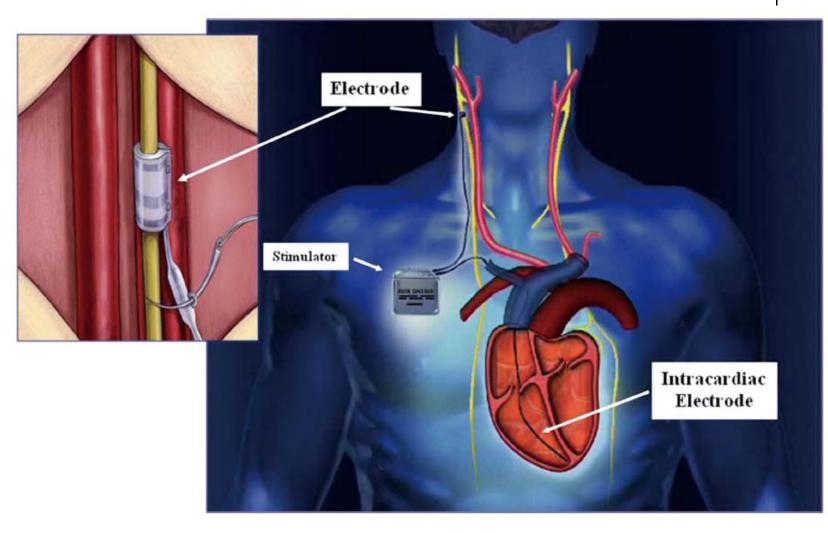
CARLO PAPPONE, M.D., Ph.D., GIUSEPPE AUGELLO, M.D., SALVATORE ROSANIO, M.D., Ph.D., GABRIELE VICEDOMINI, M.D., VINCENZO SANTINELLI, M.D., MASSIMO ROMANO, M.D., EUSTACHIO AGRICOLA, M.D., FRANCESCO MAGGI, D.Sc., GERHARD BUCHMAYR, D.Sc.,‡ GIOVANNI MORETTI,‡ YUVAL MIKA, D.Sc.,* SHLOMO A. BEN-HAIM, M.D., Ph.D.,† MICHAEL WOLZT, M.D.,‡ GUENTER STIX, M.D.,‡ and HERWIG SCHMIDINGER, M.D.;

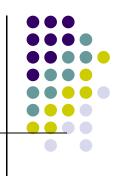


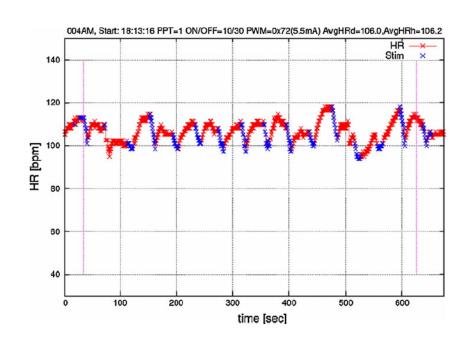

mance, symptoms, and functional status. CCM therapy for 7 hours per day is associated with greater dispersion near the mean, emphasizing the need to individually tailor CCM delivery duration. The technique appears to be attractive as an additive treatment for severe HF. Controlled randomized studies are needed to validate this novel concept. (J Cardiovasc Electrophysiol, Vol. 15, pp. 418-427, April 2004)

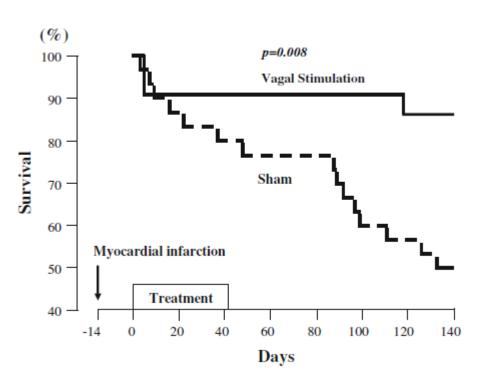
n=13 NYHA FC III LVEF 23% Peak VO2 13.8 QRSD <140 ms Optimal Tx >3 months

3 hr daily over 8 weeks 7 hr daily over 24weejs

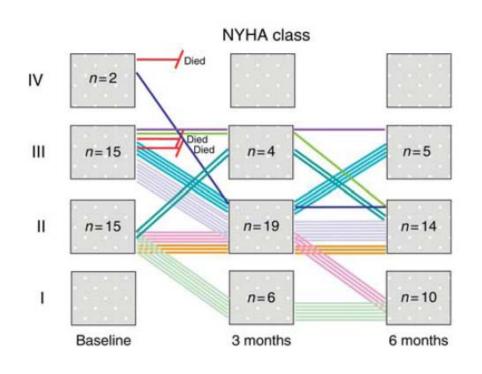

5.8 - 7.7 V

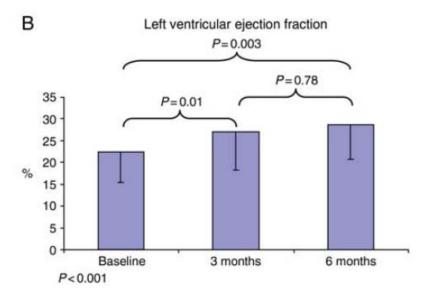



Vagal nerve stimulation



Vagal nerve stimulation





Vagal nerve stimulation





Effects of VBS

- HR ↓
- Rate-independent effects
 - Anti-apoptotic
 - NO ↑
 - Ischemia/reperfusion injury ↓
 - Anti-inflammatory
 - Anti-arrhythmic

Annular & Ventricular Remodeling

Direct Annuloplasty

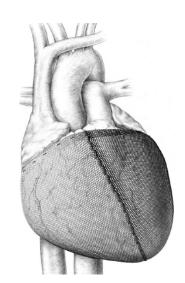
Mitralign

ValtechCardio

GDS

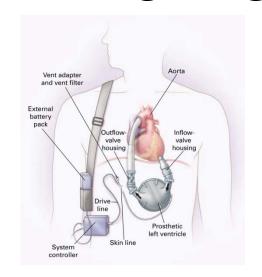
LV remodeling

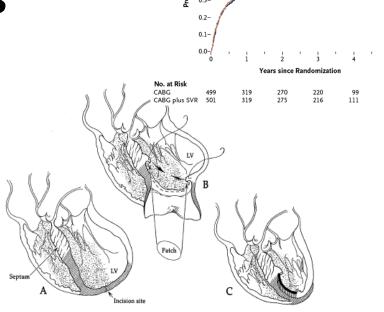

i-Coapsys


Bioventrix

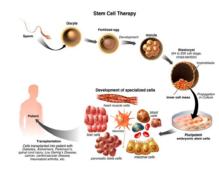
Parachute

GDS

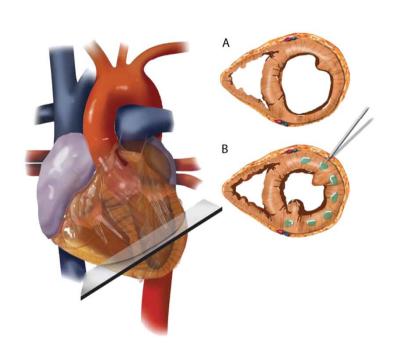

Reverse Remodeling - Recovery


У

Anti-remodeling drugs


Device

LVAD

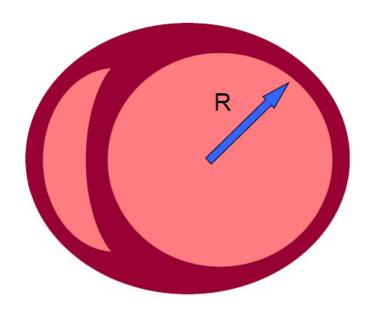


- Sugical ventricular restoration
- Cell therapy

Biopolymer gel implants

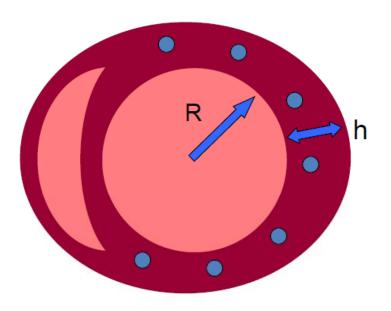
American Heart Association Scientific Sessions 2013

A Multicenter, Randomized Study Assessing the Efficacy of Left Ventricular Augmentation with Algisyl-LVR in the Treatment of Advanced Heart Failure Patients with Ischemic and Non-ischemic Cardiomyopathy:

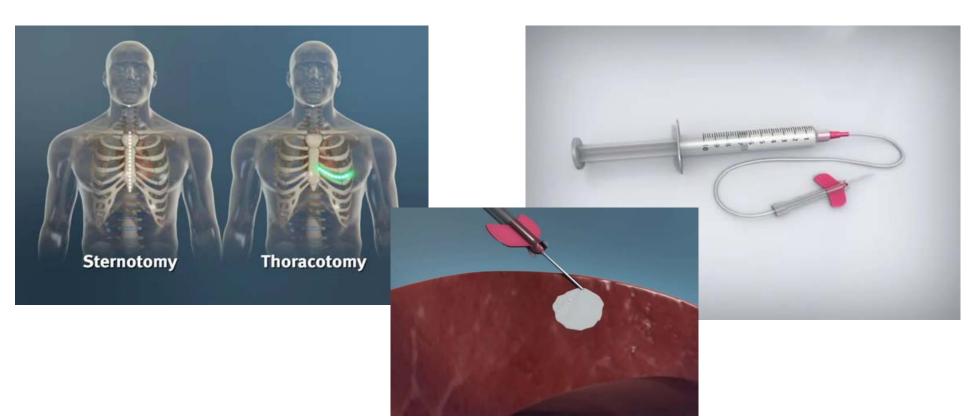

Interim Results of the AUGMENT-HF Study

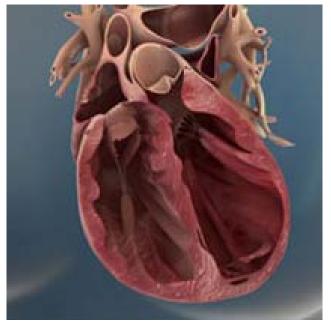
Douglas L Mann, Hani N Sabbah, Andy Hinson, Stefan D Anker, Andrew Coats, Randall J Lee, Gabriel Cristian, Dinu Dragomir, Enrico Pusineri, Ottavio Alfieri, Antonello Gavazzi, Benno Rensing, Maurizio Volterrani, Anthony Dart, Luca Bettari, on behalf of the AUGMENT-HF Investigators

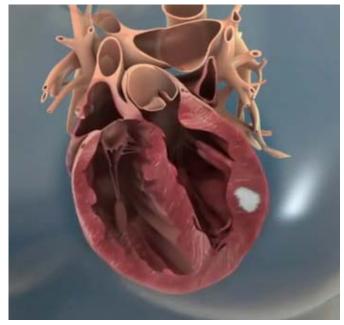
Funded by LoneStar Heart, Inc.



LV Restoration & Laplace's Law The mechanism of the Algisyl-LVRTM

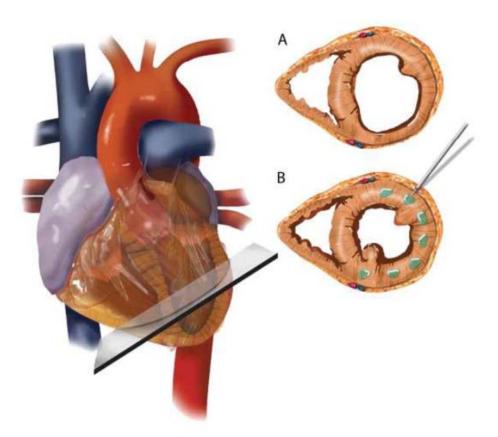

Dilated

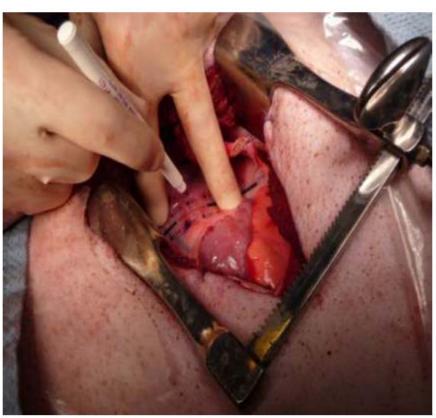

$$\sigma = \frac{PxR}{2h}$$

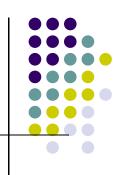


Modified (LVR)

$$\sigma = \frac{PxR}{2h}$$





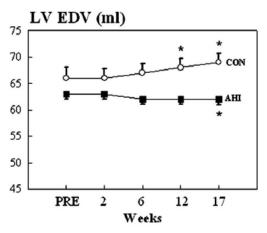


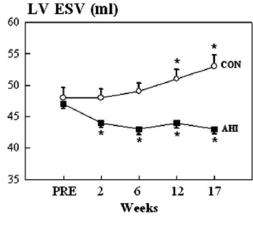
LV Restoration with Algisyl- LVRTM Placement of Alginate Hydrogel

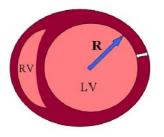
Novelty of the approach

- Alginates as new biomaterials in tissue engineering
 - Natural, polysaccharides found in brown seaweed
 - Biocompatible and inert
 - Injectable biomaterial during heart surgery
 - transition into hydrogel that will remain as cardiac implants

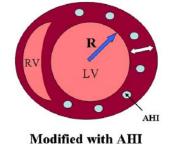
Histology

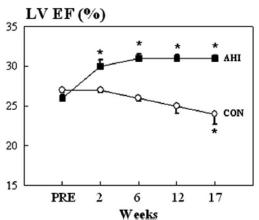


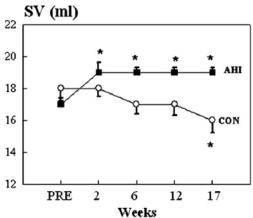



Augmentation of Left Ventricular Wall Thickness With Alginate Hydrogel Implants Improves Left Ventricular Function and Prevents Progressive Remodeling in Dogs With Chronic Heart Failure

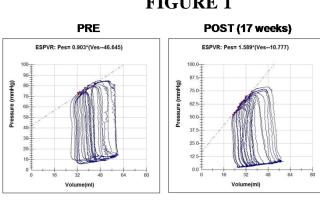
Hani N. Sabbah, PhD,* Mengju Itamar Ilsar, DVM,* Michael S. Randall J. Lee, MD, PhD‡


Detroit, Michigan; and Laguna E





Dilated



Effects of alginate hydrogel implants

- Increased wall thickness
- Greater radial deformation
- Small end-systolic volume
- Partially reversed maladaptive LV sphericity
- Reduced severity of functional MR
- Pre-Vol loops

Effects of alginate hydrogel implants

- Reduced cardiomyocyte crosssectional area (reduced hypertrophy)
- Reduction of interstitial fibrosis
- Reduction of O₂ diffusion distance
- Increase of capillary density
- Lack of AHI degradation for 2 yr
- No inflammatory reaction
- No arrhythmic events

First-in-Man Experience

Cell Transplantation, Vol. 22, pp. 529–533, 2013 Printed in the USA. All rights reserved. Copyright © 2013 Cognizant Comm. Corp. 0963-6897/13 \$90.00 + .00 DOI: http://dx.doi.org/10.3727/096368911X637461 E-ISSN 1555-3892 www.cognizantcommunication.com

Polymer-Based Restoration of Left Ventricular Mechanics

Randall J. Lee,*†‡ Andy Hinson,§ Sam Helgerson,§ Robert Bauernschmitt,¶ and Hani N. Sabbah#

*Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA, USA
†Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
‡Institute for Regeneration Medicine, University of California-San Francisco, San Francisco, CA, USA
\$LoneStar Heart, Inc., Laguna Hills, CA, USA
¶Isar Heart Center, IsarKliniken, Munich, Germany
#Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, MI, USA

Heart failure continues to be a major health care concern with relatively few options for severely advanced heart failure patients. The hallmark of heart failure is the progressive dilatation of the left ventricle, thinning of the left ventricular wall leading to increased wall stress and increased myocardial oxygen consumption. Applying Laplace's law to the failing dilated ventricle, left ventricular augmentation utilizes a tissue engineering strategy to increase wall thickness and reduce chamber diameter, resulting in a decrease in wall stress and improved left ventricular function. A review of the rationale for an in situ tissue engineering approach for this treatment of heart failure and early clinical results of the Algisyl-LVRTM program are presented.

Key words: Congestive heart failure (HF); Left ventricular (LV) mechanics; Tissue engineering; Alginate hydrogel

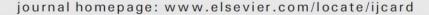
First-in-Man Experience

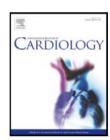
- Ischemic (n=4) / nonischemic (n=2)
- CABG / Valve procedure
- LVEF ≤40%, LVEDDi 30-40 mm/m²
- 0.25-0.35 ml intramyocardial injection
- 10-15 points at LV midventricular level

Table 1. First-in-Man Experience With Left Ventricular Restoration in Patients With Systolic Heart Failure

	Presurgery	Post 3 Days	Post 8 Days	Post 3 Months
LVEF (%)	28.7 ± 8.5	37.6±11.2	36.5 ± 16.0	36.0 ± 13.5
LVEDV (ml)	139.5 ± 20.6	122.5 ± 13.9	123.5 ± 45.0	123.6 ± 18.6
LVESV (ml)	99.8 ± 25.8	79.5 ± 22.8	87.2 ± 46.0	77.2 ± 29.5
KCCQ score	39.4 ± 28.0	n/a	53.4 ± 19.9	$74.0 \pm 25.0 *$
No. of patients in NYHA class III/IV	6	n/a	1	1

Cardiac MRI study




International Journal of Cardiology 168 (2013) 2022-2028

Contents lists available at ScienceDirect

International Journal of Cardiology

Lik Chuan Lee ^{a,b,1}, Samuel T. Wall ^{d,1}, Doron Klepach ^{a,b,1}, Liang Ge ^{a,b,1}, Zhihong Zhang ^{a,1}, Randall J. Lee ^{b,c,1}, Andy Hinson ^{e,1}, Joseph H. Gorman III ^{f,1}, Robert C. Gorman ^{f,1}, Julius M. Guccione ^{a,b,*,1}

^a Department of Surgery, University of California, San Francisco, CA, USA

^b Department of Bioengineering, University of California, San Francisco, CA, USA

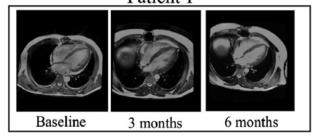

^c Department of Medicine, University of California, San Francisco, CA, USA

^d Simula Research Laboratory, Oslo, Norway

^e Lonestar Heart Inc, USA

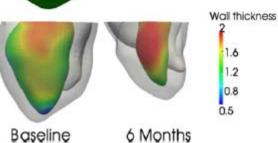
^f Glenolden Research Laboratory, Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, USA

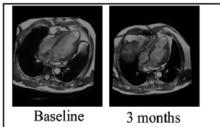
Cardiac MRI study

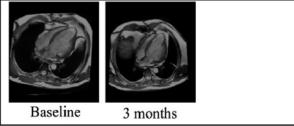

End-systole

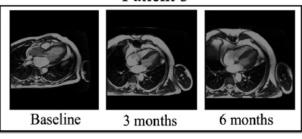
Patient 1

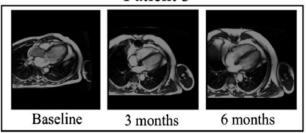
End-diastole


Patient 1


Wall thickness


Dan Har


Patient 2


Patient 2

Patient 3

Patient 3

Cardiac MRI study

Table 1
Summary on the effects of AlgiysI-LVR™+CABG at different time points.

	Patient 1			Patient 2		_	Patient 3		
	Baseline	3 months	6 months	Baseline	3 months	6 months	Baseline	3 months	6 months
EDV (ml)	197.4	98.2	98.2	367.6	244.7	-	228.2	94.6	93.8
ESV (ml)	122.4	34.0	23.7	280.4	173.3	-	148.1	50.1	35.7
SV (ml)	75.0	64.2	74.5	87.2	71.4	-	80.1	44.5	58.1
EF (%)	40	65.4	75.9	23.7	29.2	-	35.1	47.0	61.9
Sphericity index	0.74	0.61	0.56	0.72	0.7	-	0.77	0.73	0.67
Average thickness (cm)	1.12	1.52	1.65	0.83	1.02	-	1.24	1.35	1.58
Average ED stress (kPa)	5.6	3.1	3.1	8.7	6.4	-	5.4	3.6	2.8
Average ES stress (kPa)	29.6	12.7	9.4	52.4	37.4	_	29.4	19.3	12.8
Peak ES stress (kPa)	61.9	27.2	24.5	178.2	109.6	-	69.4	48.2	35.2

AUGMENT-HF

Example: "Heart attack" AND "Los Angeles"

Advanced Search | Help | Studies by Topic | Glossary

Search for studies:

Clinical Trials.gov

A service of the U.S. National Institutes of Health

About Clinical Studies

Resources

Home > Find Studies > Study Record Detail

Text Size ▼

Search

A Randomized, Controlled Study to Evaluate Algisyl-LVR™ as a Method of Left Ventricular Augmentation for Heart Failure (AUGMENT-HF)

About This Site

This study is currently recruiting participants.

Verified January 2014 by LoneStar Heart, Inc.

Sponsor:

Find Studies

LoneStar Heart, Inc.

Information provided by (Responsible Party): LoneStar Heart, Inc.

ClinicalTrials.gov Identifier:

NCT01311791

Submit Studies

First received: March 8, 2011 Last updated: January 8, 2014 Last verified: January 2014 History of Changes

Full Text View

Tabular View

No Study Results Posted

Purpose

This is a pilot study to evaluate the safety and efficacy of the Algisyl-LVR™ device. The purpose of this study is to investigate Algisyl-LVR™ employed as a method of left ventricular augmentation and restoration in patients with dilated cardiomyopathy. Algisyl-LVR™ will be injected into the myocardium under direct visualization during the surgical procedure.

This study will evaluate the concept that direct mid left ventricular (LV) intramyocardial injections of Alginate hydrogel implants into the free wall of the failing LV will reduce LV size, restore LV shape, lower LV wall stress and improve global LV function.

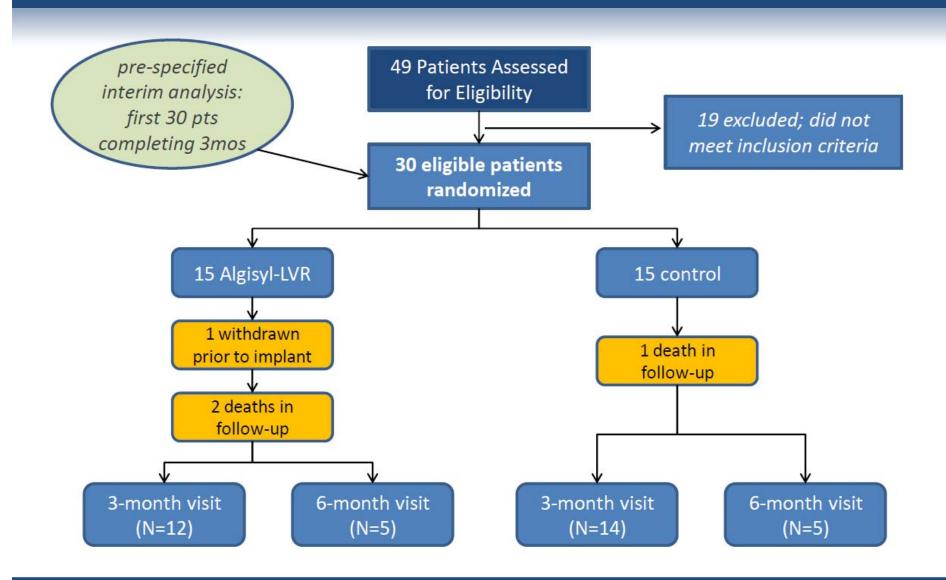
The Primary Efficacy Endpoint of the study is the change in Peak VO2 (maximum oxygen uptake) from baseline to 6 months of follow-up. The Primary Safety Endpoint of the study is to estimate the 30 day mortality associated with the implantation of the Algisyl-LVR device The hypothesis of the study is that there is a statistically significant difference in change in Peak VO2 from baseline to 6 month follow-up when the medically managed arm is compared to the Algisyl-LVR arm, i.e. the Algisyl-LVR arm is superior to medical management

Condition	Intervention	Phase
Heart Failure	Device: Algisyl-LVR	Phase 2
Dilated Cardiomyopathy	Drug: Standard medical therapy	Phase 3

Study Type:

Interventional

Study Design: Allocation: Randomized


Endpoint Classification: Safety/Efficacy Study Intervention Model: Parallel Assignment Masking: Single Blind (Outcomes Assessor)

Primary Purpose: Treatment

Official Title: A Randomized, Controlled Study to Evaluate the Safety and Cardiovascular Effects of Algisyl-LVR[™] as a Method of Left Ventricular Augmentation in Patients With Dilated Cardiomyopathy (AUGMENT-HF)

AUGMENT-HF Interim Analysis

AUGMENT-HF Interim Dataset

Baseline Demographics (ITT)

	ALL (n=30)	Algisyl-LVR (n=15)	Control (n=15)	P
Age (years)	63.3 (9.1)	63.1	62.3	N.S.
Male	24 (80%)	10 (67%)	14 (93%)	N.S
Ethnicity (white)	30 (100%)	15 (100%)	15 (100%)	N.S.
NYHA class II/III/IV	(3)(23)(4)	(0)(13)(2)	(3)(10)(2)	_
Ischemic HF	20 (67%)	10 (67%)	10 (67%)	N.S.
Non-Ischemic HF	10 (33%)	5 (33%)	5 (33%)	N.S.
CRT	13 (43%)	6 (40%)	7 (47%)	N.S.
LVEF (%)	25.7	25.0	26.7	N.S.
LVEDD (cm)	6.24	6.11	6.37	N.S.
Peak VO2 (ml/min/kg)	12.2	12.3	12.0	N.S.
6 MWT (m)	270	235	305	.013*

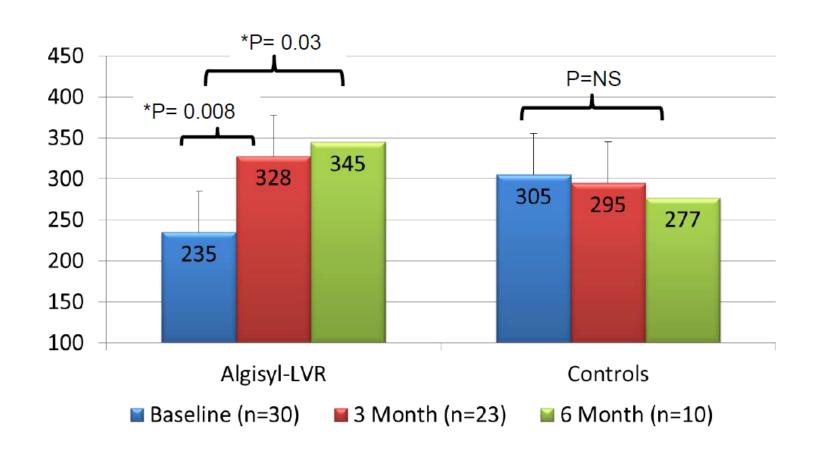
AUGMENT-HF Interim Dataset

Concomitant Medications

	Algisyl-LVR (N=15)	Usual Care (N=15)
Anti-thrombotics / Anti-platelet agents	14 (93.3%)	14 (93.3%)
Anti-platelet aggregation agents	12 (80.0%)	10 (66.7%)
Diuretics	14 (93.3%)	13 (86.7%)
Aldosterone antagonists	11 (73.3%)	5 (33.3%)
Beta-blockers	13 (86.7%)	12 (80.0%)
ARB/ ACE	10 (66.7%)	11 (73.3%)
Lipid-lowering	10 (66.7%)	11 (73.3%)

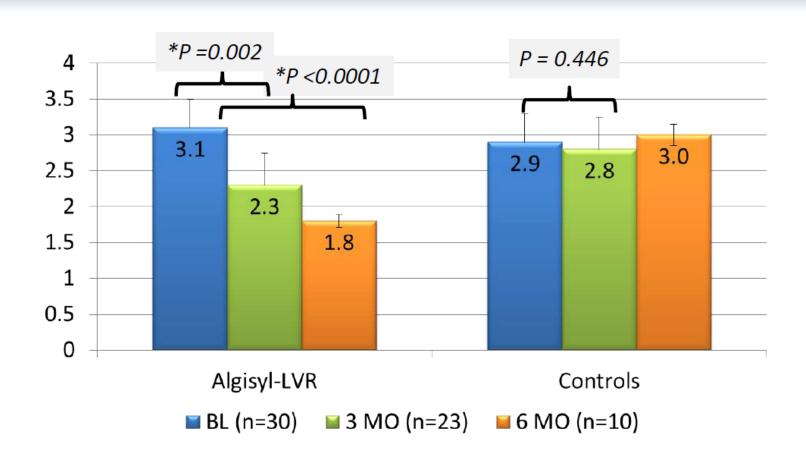
Primary Safety End Point Estimate of Algisyl-LVR device 30 day mortality

30 day mortality

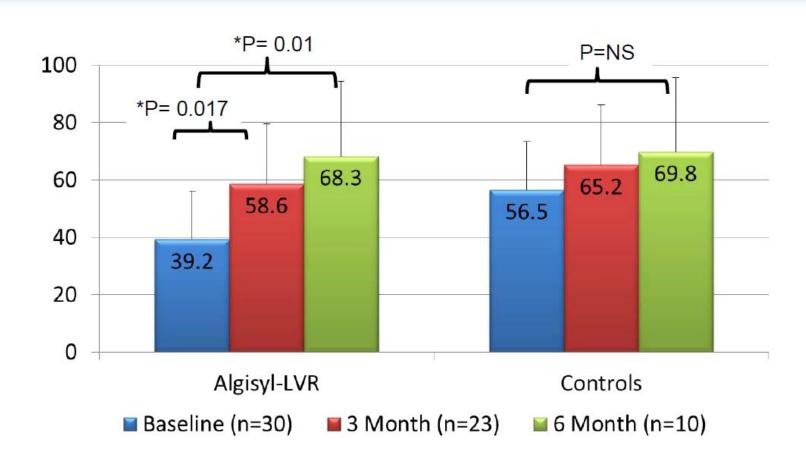

Algisyl-LVR (N=14)	Total # of events	# Pts with event (% of Pts)
30 day mortality	0	0 (0.0%)
30 day morbidity - Serious adverse events within 30 days of the surgical implant procedure	5	3 (21.4%)

Overall mortality in the interim data set

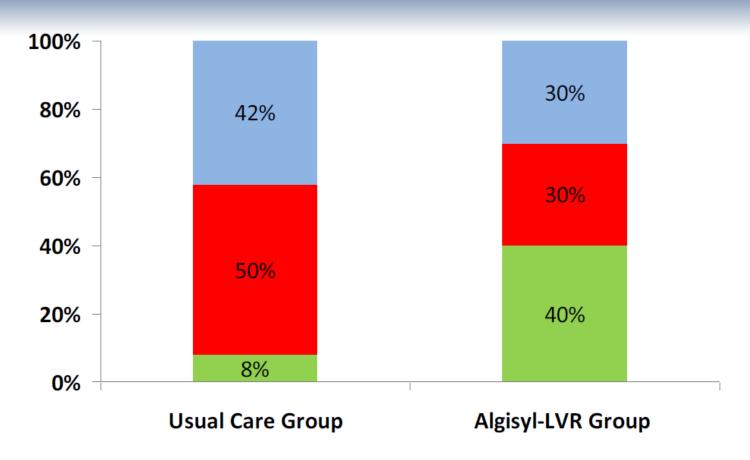
- Algisyl-LVR Group: 2 patients died > 30 days post-operatively
 - Drug resistant Klebsiella Pneumonia 66 days post-procedure
 - Critical illness 2° to Sepsis 49 days post-procedure
- Usual Care Group: 1 patient
 - Worsening Heart Failure 39 days post-randomization



AUGMENT-HF Six Minute Walk Distance by Visit



AUGMENT-HF NYHA Functional Class by Visit



AUGMENT-HFKCCQ Overall Summary Score

AUGMENT-HF

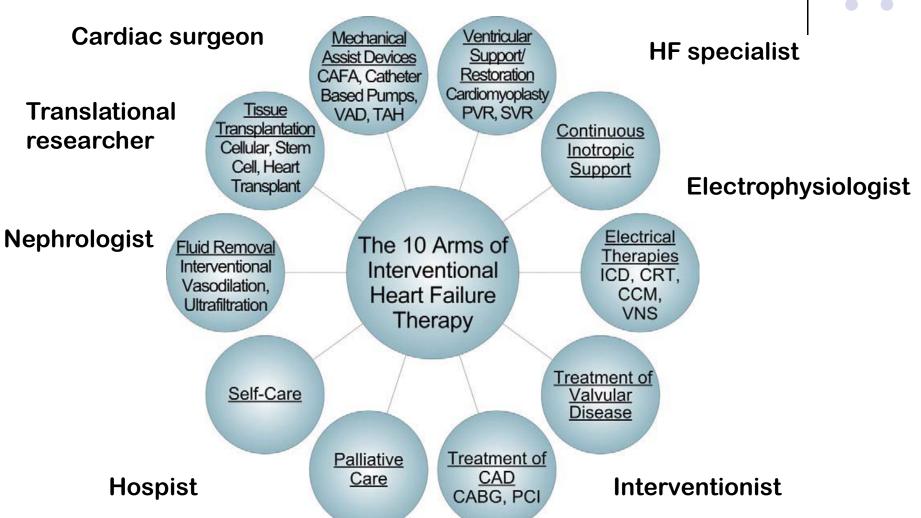
Clinical Composite of Peak VO2 at 3 Months

- Improved is an increase of 1.0 ml/min/kg or more
- Unchanged is a change of -0.99 to +0.99 ml/min/kg
- Worsened a decrease of 1.0 ml/min/kg or more

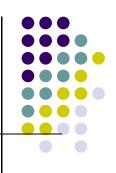
AUGMENT-HF Interim Analysis Conclusions

- Interim results of the AUGMENT-HF trial show that Algisyl-LVR[™] is safe, with an acceptable 30 day post-operative morbidity and mortality
- The interim efficacy analysis suggests that the Algisyl-LVR TM leads to improvements in quality of life and functional capacity in comparison to patients who are treated with optimal medical management alone
- These interim results should be viewed as provisional given the small number of patients and the short follow-up time
- These studies provide proof-of-concept for LV reconstruction with Algisyl-LVR TM as a potential novel new therapy for patients with advanced heart failure

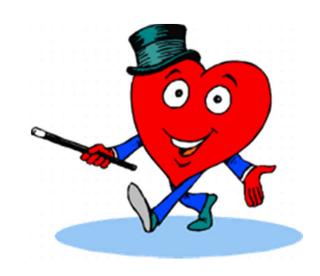
Solving problems



- Long-term safety and effects?
- Larger number study
- Blinded trial (vs open trial design)
- Risk of arrhythmia?
- Survival benefits?


Percutaneous approach?

HF managements



Summary

- Diverse designs and trials for reverse remodeling
- Biopolymer gel implants
 - One of promising novel approach
 - Less invasive
 - Short-term safety
 - Early effects of reverse remodeling at the levels of histology, hemodynamics and LV structures
 - Needs for long-term safety and effects
 - Needs for blinded trial with larger number

경청해 주셔서 감사합니다.

