

KSC-JCS Joint Symposium April 18 / 10:40-12:10 / Rm. 1 New Trends in Cardiovascular Multimodality Imaging

Korean Cardiology-Related Societies Joint Scientific Congress 2014

Multimodality Imaging in Cardiac Stem Cell Research

IL SUK SOHN, MD, PhD

Department of Cardiology

Kyung Hee University Hospital at Gangdong

Kyung Hee University School of Medicine, Seoul, Korea

Stem Cell Therapy

- Cell sources (embryonic vs adult, iPSCs..)
- Delivery (transplantation)
- Homing, integration (engraftment)
- Cell survival, differentiation, function
- Monitoring (imaging)

Stem-cell Therapy for Cardiac Disease

Nature 2008

Stem-cell Therapy for Cardiac Disease

Isolation

Blood

Choices

- Bone marrow
- Muscle biopsy
- Cardiac biopsy
- Embryonic stem cells

- Purity of isolated cells
- Sufficient number of cells
- Differentiation into cardiomyocytes before transplantation

• Intravenous

Delivery

- Intracoronary
- Intramyocardial

- Safety
- Cell retention
- Spatial distribution

Survival and proliferation

- Ischaemic environment
- Inflammation
- Immune response
- Fibrosis
- Growth and adhesion signals
- Formation of functional blood vessels

- Electromechanical integration
- Stability and safety

Long-term engraftment

Arrythmogenicity

- Differentiation into mature cardiomyocytes
- Electrical integration
- Mechanical coupling

Nature 2008

Delivery and Effects of MSCs

Delivery of MSCs

Mechanisms of Action

Functional and Structural Effects

-Engraftment and differentiation: Cardiomyocytes -Reverse remodeling in chronic ischemic cardiomyopathy -Prevention of remodeling after acute MI -Scar size reduction Endothelial cells Smooth muscle cells Increase tissue perfusion -Improved regional contractility -Angiogenesis -Increase ejection fraction -Paracrine signaling -Anti-inflammatory effects -Activate endogenous cardiac stem cells

Williams AR, Hare JM. Circ Res 2011

Delivery of MSCs to the heart

- Peripheral intravenous infusion
- Surgical injection during open heart surgery
- Catheter-based
 - intracoronary infusion
 - retrograde coronary venous infusion
 - transendocardial injection
- Infarct (scar) area vs border zone
- ▶ 20~200 M cells

Williams AR, Hare JM. Circ Res 2011

Imaging Stem Cell Therapy

- Anatomic and functional assessment
- In vitro and in vivo
- Visualization of biological processes at
 - Cellular and molecular level (molecular imaging)
- Every steps in stem cell therapy
 - Delivery : guiding
 - In vivo monitoring : survival, proliferation, engraftment
 - Long-term safety and efficacy : function, tumorigenicity

Imaging Cardiac Stem Cell Therapy

Multimodality Imaging Techniques

- Ultrasound
- Computed tomography
- Magnetic resonance
- Radionuclide : PET, SPECT
- Optical
 - bioluminescence imaging(BLI)
 - fluorescence

Comparison of Multimodality Imagings

Modality	Spatial resolution, mm	Imaging time	Current clinical	Advantage	Disadvantage
PET	1-2 (micro PET), 6-10(clinical PET)	Minutes	Perfusion, infarct size, viability	High sensitivity, translational, quantitative	Radiation, cyclotron or generator needed
SPECT	0.5-2(micro SPECT) 7-15(clinical SPECT)	Minutes	EF, perfusion, infarct size	High sensitivity, translational, multiplexed imaging	Radiation
BLI	3-5	Minutes	NA	High sensitivity, easy, low cost	Low spatial resolution, not translational
MRI	0.01-0.1(small-animal), 0.5- 1.5 (clinical)	Min~hrs	EF, perfusion, infarct size, viability	High spatial resolution, superb soft tissue discrimination	Long scan time
СТ	0.02-0.3(micro), 0.5-2(clinical)	Minutes	NA	High spatial resolution, superb bone imaging	Radiation, limited soft-tissue discrimination
US	0.04-0.1(small-animal), 0.15-1(clinical)	Sec ~ min	EF, perfusion, viability	Real-time, portable, low cost, high sensitivity	High operator dependency, limited target choices

EF, ejection fraction; BLI, bioluminescence imaging; NA, not applicable

Circ Res 2011;109:962

How Can We Image the Target Cells?

aeterminedly; diabolically; diplomatically; disconcertingly, discreetly; donaedly; drastica easily; ecstatically; effectively; effortlessly; emphatically; endlessly; enviab excessively; exquisitely; extravagantly; exuitantly; faintly; faiteringly; famously; fearlessly; furiously; furtively: gainfully; generally; gently; genuinely; gloriously; gingly; half heartedly; half-jokingly; handily; haphazardly; happily; hastily; haughtily; helplessly; GIG riously; honestly honorably; humanely, hysterically; idiosyncratically; illadvisedly; illogically; immeasurably; incessantly; inconveniently; incrementally; investigably; indelibly; indomitably; indubitably adicably; in excusably, inexperiedly, inexplicably, informally; ingeniously; insistently; intangibly, intrepidl iven resonally; ironically; jauntily; jokingly; joyously; judiciously; lackadaisically; lamentably; laudably; lly; logically; lockity; magically; magnificently; markedly; masterfully; materially; metedramatically;mergie momentously; matteringly; mysteriously; narrowly; necessarily; needlassly; nimbly; halantly; notably; noticeably; obliquely; occasionally; ominously; openly; ostentatiously; overwhelmin partially; addatagically; perceptibly; perceiciously; perpetually; perplexingly; plausibly; portentously tously, precisely, prejudicially; prematurely; privately; probably; profitably; profoundly; entially; prudently; publicly; purposely; quick-wittedly; randomly; rapidly; rapidrously; recklessly; tively repeatedly; resolutely, reverently; rigidly; rigorously; roughly; ruefully; ruthessly interly; schemingly, scrupulously; sensationally; sensibly; seriously; shrewdly; simply; sincerely; singu slowly; slying smoothly; soberly; somewhat; spasmodically; specifically; spontaneously; stations pusly; strikingly, structurally; stuperdously; substantially; suddenly; sufficiently; summarily; superficiently; ingly; surreptitiously; swaggeringly; sympathetically; tangibly; tantalizingly; teariuly; technical thriftily; thumpingly; timidly; tirelessly; touchingly; tragically; treacherously; tremation yrannically; unapologetically; 2012/10/19 18:53:55 sty; vica unwisely; utterly; vacantly; wisely: zealously: [W

adverb@GSB, Stanford University

Concepts in Molecular Imaging

Radionuclide, fluorophore, paramagnetic chelate, iron oxide, iodine, gas

Cell, liposome, polymer, microbubble, viral particle, nanoparticle

Cell surface receptor, extracellular matrix protein

Circ Res 2011;109:962

Labeling for Cardiac Stem Cell Imaging

A Direct Labeling

B Reporter Gene Labeling

Circ Res 2011;109:962

Labeling for Cardiac Stem Cell Imaging

- Direct labeling with radionuclides or iron nanoparticle
 - Contrast agents (signal elements)
 - Bind to cell surface proteins
 - Transported into the target cell by diffusion, endocytosis, or active transport

Reporter gene/probe labeling

 Requires cell transfection/transduction with a reporter gene → produces specific proteins (ie, membrane transport, surface receptor, intracellular storage proteins/enzymes) → take up exogenously administered contrast agents

Direct Cell Labeling Strategies

BMCs 1.25x10⁸ w/ ¹⁸F-FDG Intracoronary, PET

J Am Coll Cardiol Img 2012;5:559-65

Reporter Gene Imaging Strategies

JAm Coll Cardiol Img 2012;5:559-65

Labeling for Cardiac Stem Cell Imaging

Direct labeling with radionuclides or iron nanoparticle

Signal can be diluted by cell division or dissipate after radionuclide decay or may persist despite cell death because of engulfment of dead cells by macrophages

Reporter gene/probe labeling

- Cells must be viable with intact protein synthesis machinery in order to produce a detectable signal
- Useful especially for in vivo cell tracking

 \rightarrow better for in vivo monitoring of cell viability

 Safety concerns, ie, potential risk of immunogenecity and tumorigenicity by random reporter gene integration

Ideal Imaging Probes should have

- High imaging specificity for tracking the desired biological processes
- High imaging sensitivity for detection by available imaging modalities
- Minimal cellular toxicity
- Minimal systemic toxicity

Circ Res 2011;109:962

BLI, Cell counts *vs* **bioluminescence**

Poor Survival of Transplanted Cells

Murine MI models In vivo bioluminescence images

Circ Res 2011;109:962

In Vivo Tracking of MSC in Porcine MI

MSC transfected with lentivirus carrying triple-fusion protein Porcine MI models Intramyocardial injection under electrocardiac mapping guide In vivo PET images after ¹⁸F-FHBG

Circ Cardiovasc Imaging 2008;1:94

In Vivo Imaging of Autologous iPSC

0.005% ID/g

в

PET-CT

MRI, T2W GRE

Ex vivo MicroPET

Canine iPSC dual labeled with

HSVttk reporter gene for PET imaging of cell viability and iron oxide particles for MR imaging of cell location

J Biol Chem2011;286:32697-32704

С

Regional Function by Strain Imaging

intracoronary transfer of bone marrow progenitor cells (BMPCs) early after reperfusion in 67 STEMI improves regional myocardial function in a randomized double-blind, placebocontrolled strain rate imaging study

Eur Heart J 2009;30:662-70

Echo in Cardiovascular Stem Cell Research

Echocardiography in Translational Research: Of Mice and Men

Marielle Scherrer-Crosbie, MD, PhD, and Helène B. Thibault, MD, Boston, Massachusetts

Mice are increasingly used in cardiovascular research, and echocardiography is ideally suited to evaluate their cardiac phenotype. This review describes the current use of mice echocardiography and focuses on some of its applications in both basic and clinical science. (J Am Soc Echocardiogr 2008;21:1083-1092.)

J Am Soc Echocardiogr 2008

Imaging Cardiac Stem Cell Therapy

Thank you for your kind attention !

ASCI 2014

The 8th Congress of Asian Society of Cardiovascular Imaging

"Heartbeat for Quantum Jump in Cardiovascular Imaging" June 12(Thu) – 14(Sat), 2014 Lotte Hotel Jeju, Jeju, Korea