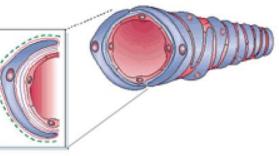
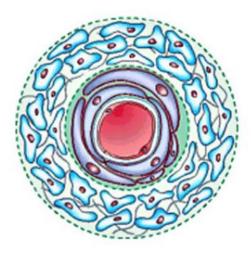

Vascular disease. Structural evaluation of vascular disease


Goo-Yeong Cho, MD, PhD Seoul National University Bundang Hospital



resistance vessels

- : arteries $<300 \ \mu m$ in diameter
- : capillaries <100 μ m in diameter

Capillary	Arteriole	Artery			
Endothelial cell tube	Endothelial cell tube	Endothelial cell tube	-> intima		
	Internal elastica lamina	Internal elastica lamin	Internal elastica lamina		
Pericytes	Smooth muscle cells	Smooth muscle cells	-> media		
Basal lamina	Basal lamina	Basal lamina			
	External elastic lamina	Fibroblasts	->adventita		
		Extracellular matrix			
		External elastica lamir	na		

Jain et al, *Nature Medicine***9**, 685 -693 (2003)

Arteries

- Large arteries are elastic (conducting) arteries – pressure reservoirs
- Medium arteries are muscular (distributing) arteries – more smooth muscle
- Contraction or relaxation of muscle changes the size of the lumen, and so controls the blood pressure in the vessel.

- Progressive over years
 - Starts with some injury to endothelium
 - Smoking, hypertension, hyperlipidemia, diabetes, autoimmune disease, and infection
 - Inflammation, release of enzymes by macrophages causes oxidation of LDL, which is then consumed by macrophages – foam cells – accumulate to form fatty streaks
 - Fatty streaks of lipid material appear first as yellow streaks and spots
 - Smooth muscle cells proliferate, and migrate over the streak forming a fibrous plaque

- Fibrous plaque results in necrosis of underlying tissue and narrowing of lumen
- Inflammation can result in ulceration and rupture of the plaque, resulting in platelet adherence to the lesion = complicated lesion
- Can result in rapid thrombus formation with complete vessel occlusion → tissue ischemia and infarction

Compliance

- The increase in volume a vessel can accommodate for a given increase in pressure.
 - Depends on the ratio of elastic fibers to muscle fibers in the vessel wall.
 - Elastic arteries more compliant than muscular arteries
 - Veins more compliant than either artery (blood reservoirs)
- Decreased compliance suggests an increased stiffness of vessel wall.
- Determines the vessel's response to changes in pressure.

Why do we screen for asymptomatic cancers but ignore asymptomatic CVD?

General Prevention Guidelines for All Average Risk Adults

Provide advice to patients on nutrition and physical activity:
•Achieve and maintain a healthy weight.
•Exercise for at least 30 minutes on 5 or more days a week.
•Eat at least 5 servings of vegetables and fruits daily.
Ask patients about tobacco use and provide cessation counseling and pharmacotherapy.

		<u> </u>	AGE	
TEST	20	30	40	50+
вмі		Each regul	ar health care v	isit >
Blood Pressure			i care visit (or a if BP <120/80 r	
Lipid Profile			Every	5 years
Blood Glucose test				very 3 years
Clinical Breast Exam (CBE) and Mammography	CBE ever	y 3 years		CBE and hography
Pap test	Yearly		ry 1-3 years, de of test and pas	
Colorectal Screening				Frequency depends on test preferred
Prostate specific antigen test and digital rectal exam				Offer yearly, assist informed decisions

General prevention guidelines for all average-risk adults.

CVD Risk factors (ESH-ESC)

Sublinical organ damage

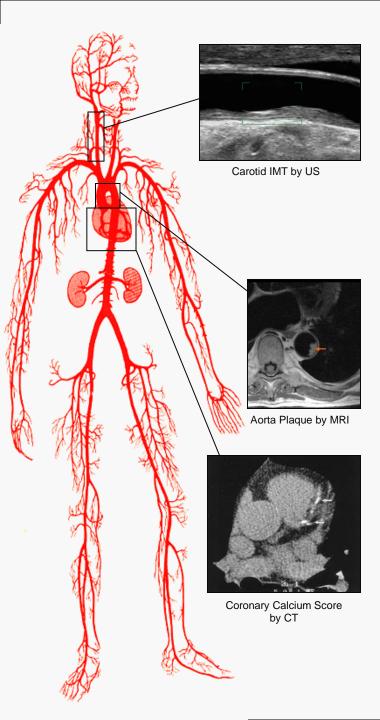
- 1. LVH on ECG
- 2. LVH on echocardiogram (LVMI > 125 (♂), > 110 (♀))
- 3. Carotid IMT > 0.9 mm or plaque
- 4. PWV (carotid to femoral) > 12 m/sec
- 5. Creatinine ♂ = 1.3-1.5 mg/dl, ♀ = 1.2-1.4
- 6. GFR < 60 ml/min
- 7. ABI < 0.9
- 8. Microalbuminuria 30-300 mg/day or albumin-creatinine ratio $d \ge 22$, $931 \ge mg/g$ Cr

- Vascular disease screening and prevention – Who?
 - Age > 60 years with following risk (≥ 1)
 - DM, HTN, hyperlipidemia, smoking, CAD, stroke, PAD, FHx of vascular disease
 - What?
 - Screening: non-painful, no discomfort, no side effect
 - carotid duplex, abdominal USG, ABI
 - Disease specific test
 - TMT for claudication, PPG with thermal measurement, ABI,
 - Angiography, CT scan, MRI,

Treatment of Subclinical Coronary Atherosclerosi S

"Prevention of Heart Attacks must be the Primary Goal."

E Brauwald


Treatment of Atherosclerosis Risk Factors

Primary Prevention of Atherosclerosis Risk Factors

FRS guided Imaging guided

SNUH SEOUL NATIONAL UNIVERSITY BUNDANG HOSPITAL

Image–Guided Prevention

• Evidence supporting the use of non-invasive imaging tests to screen for CAD is gradually accumulating.

"Future image-guided interventions will enable ...to detect critical illnesses at their most curable stage ...before any symptoms or signs are noticeable.

The practice of medicine will shift ... to one of prediction and prevention in asymptomatic, at-risk populations."

NIH Fact Sheet 'Image Guided Interventions'

Coronary Calcium as a Predictor of Coronary Events in Four Racial or Ethnic Groups

Robert Detrano, M.D.. Ph D

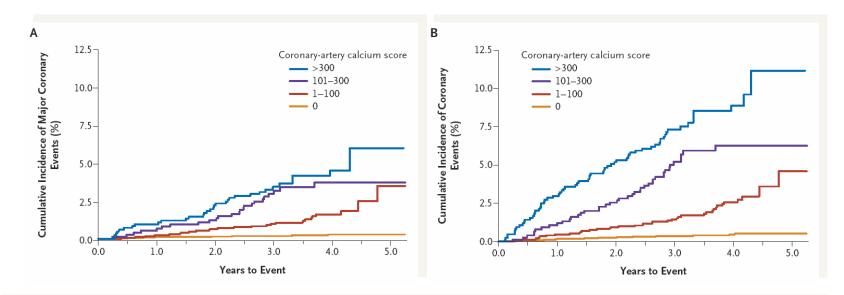
In white populations, computed tomographic measurements of coronary-artery calcium predict coronary heart disease independently of traditional coronary risk factors. However, it is not known whether coronary-artery calcium predicts coronary

heart disease in other racial or ethnic groups.

We collected data on risk factors and performed scanning for coronary calcium in a population-based sample of 6722 men and women, of whom 38.6% were white, 27.6% were black, 21.9% were Hispanic, and 11.9% were Chinese. The study subjects had no clinical cardiovascular disease at entry and were followed for a median

of 3.8 years.

There were 162 coronary events, of which 89 were major events (myocardial infarction or death from coronary heart disease). In comparison with participants with no coronary calcium, the adjusted risk of a coronary event was increased by a factor of 7.73 among participants with coronary calcium scores between 101 and 300 and by a factor of 9.67 among participants with scores above 300 (P<0.001 for both comparisons). Among the four racial and ethnic groups, a doubling of the calcium score increased the risk of a major coronary event by 15 to 35% and the risk of any coronary event by 18 to 39%. The areas under the receiver-operating-characteristic curves for the prediction of both major coronary events and any coronary event were higher when the calcium score was added to the standard risk factors.


The coronary calcium score is a strong predictor of incident coronary heart disease and provides predictive information beyond that provided by standard risk factors in four major racial and ethnic groups in the United States. No major differences among racial and ethnic groups in the predictive value of calcium scores were detected.

M.D., J. Jeffrey Carr, M.D., M.S.C.E., M.D., Ph.D., Aaron R. Folsom, M.D., Moyses Szklo, M.D., Dr.P.H., 'Leary, M.D., Russell Tracy, Ph.D., ^h.D., and Richard A. Kronmal, Ph.D.

N Engl J Med 2008;358:1336-45.

ΓY

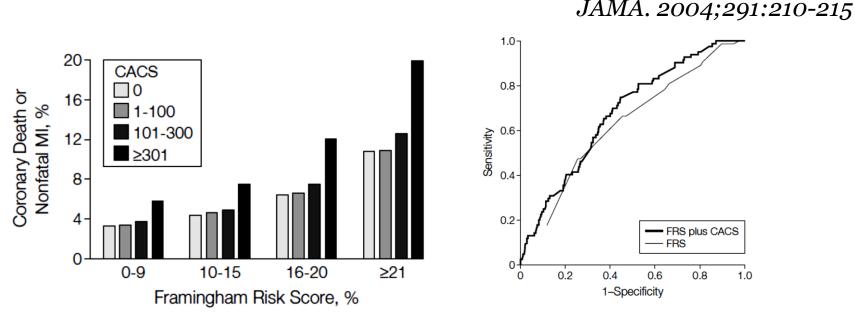

Coronary calcium score

Table 4. Risk of Coronary Heart Disease Associated with Coronary-Artery Calcium Score in Four Racial or Ethnic Groups.*									
Racial or Ethnic Group		Major Coronary Event†	Any Coronary Event						
	No.	Hazard Ratio (95% CI)‡	P Value	No.	Hazard Ratio (95% CI)‡	P Value			
White	41	1.17 (1.06–1.30)	< 0.005	74	1.22 (1.13–1.32)	<0.001			
Chinese	6	1.25 (0.95–1.63)	0.11	14	1.36 (1.12–1.66)	<0.005			
Black	18	1.35 (1.16–1.57)	< 0.001	38	1.39 (1.25–1.56)	<0.001			
Hispanic	24	1.15 (1.02–1.29)	<0.025	36	1.18 (1.07–1.30)	<0.001			

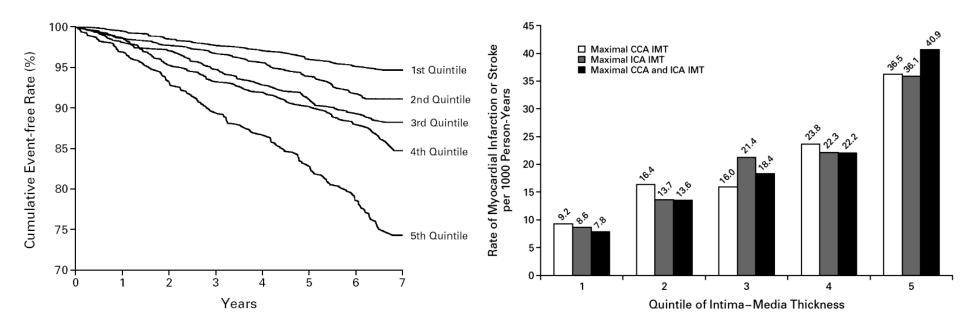
For future risk stratification

Calcium score in real clinical practice?
 Additional value over FRS

High CACS can modify predicted risk obtained from FRS alone, especially among patients in the intermediate risk category in whom clinical decision making is most uncertain

Carotid IMT or plaque?

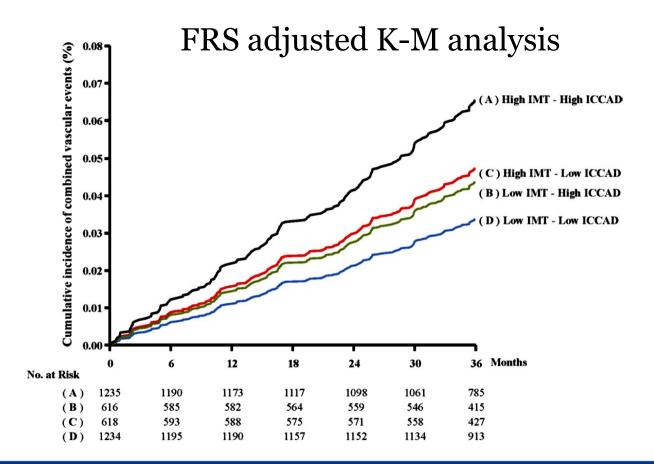
Carotid USG:


1st step in the diagnostic strategy

- Highly accurate and reliable test
- Advantage
 - Direct visualization of the extracranial arteries
 - Accurate determination of degree of stenosis
 - Assess presence of morphology of plaque
 - Useful tool to evaluate revascularization procedures
 - Identify non-atherosclerotic abnormalites
 - Carotid dissection
 - Firbomuscular disease
 - Trauma

SNUH SEOUL NATIONAL UNIVERSITY BUNDANG HOSPITAL

Carotid-Artery IMT as a Risk Factor for MI and Stroke in Older Adults


- 4,476 patients > 65 years with no clinical CV disease
- Primary end-points
 - New MI / Stroke
- Median follow-up 6.2 years

N Engl J Med 1999;340:14-22

IMPROVE

- 3,703 subjects with 36.2 months f/u
- \geq 3 vascular risk factors without documented atherothrombosis

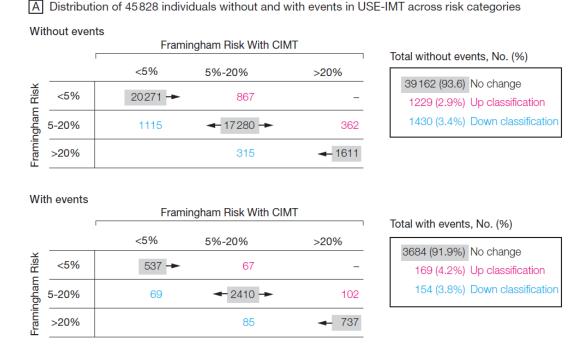
J Am Coll Cardiol 2012;60:1489–99

Common Carotid Intima-Media Thickness Measurements Do Not Improve Cardiovascular Risk Prediction in Individuals With Elevated Blood Pressure: The USE-IMT Collaboration

Hypertension. 2014;63:00-00. Online Data Supplement

	. V D	U	Number of Individuals With Elevated Blood	121	UI	I	
Name	Acronym or Abbreviation	Location	Pressure (% of total, n=17254)	Total Number of Participants	90th Percentile of IMT	Number of Events	References
Atherosclerosis Risk in Communities	ARIC	United States	2351 (14)	14322	0.83	1192	28
Carotid Atherosclerosis Progression Study	CAPS	Germany	916 (5)	3885	0.90	128	22
Cardiovascular Health Study	CHS	United States	1090 (6)	3121	1.03	712	29
Malmö Diet and Cancer Study	Malmö	Sweden	2825 (16)	4767	0.94	315	30
Tromsø Study	Tromsø	Norway	2200 (13)	4242	0.97	558	31
Multi-Ethnic Study of Atherosclerosis	MESA	United States	1313 (8)	5894	0.95	167	32
Kuopio Ischemic Heart Disease Risk Factor Study	KIHD	Finland	406 (2)	879	0.95	152	33
Edinburgh Artery Study	EAS	United Kingdom	346 (2)	622	1.00	21	34
The Firefighters and Their Endothelium Study	FATE	Canada	438 (3)	1441	0.95	33	35
Charlottesville Study	Charlottesville Study	United States	312 (2)	610	1.03	712	36
Northern Manhattan Study	NOMAS Study	United States	589 (3)	1093	0.83	57	37
The Hoorn Study	Hoorn Study	The Netherlands	118 (1)	248	1.04	11	38
Osaka Follow-Up Study for Carotid Atherosclerosis 2	OSACA2 Study	Japan	182 (1)	403	1.15	19	39
Whitehall II	Whitehall II	United Kingdom	2440 (14)	9748	0.98	257	40
Rotterdam Study	Rotterdam	The Netherlands	1433 (8)	3718	0.92	642	41
Non-Invasive measurements of Atherosclerosis in the Nijmegen Biomedical Study	NIMA-NBS	The Netherlands	295 (2)	1200	0.97	17	42,43

Net reclassification tables in HTN


		Distribu	tion of 17,254 h	ypertensives w	vithout and with ev	ents across risk c	ategories
			FRS+CIM	T			
]	Non-events	<5%	5-10%	10-20%	>20%		
	<5%	3,959	312	0	0	n=13,308	No change (87.3%)
FRS	5-10%	412	4,455	398	1		
Ч	10-20%	0	445	3577	178	n=889	Up classification (5.8%)
	>20%	0	0	186	1,317	n=1,043	Down classification (6.8%
							FRS+CIMT
			FRS+CIM	T			
I	Events	<5%	5-10%	10-20%	>20%		
	<5%	105	20	0	0	n=1,757	No change (87.2%)
FRS	5-10%	22	371	50	0		
F	10-20%	0	60	692	56	n=126	Up classification (6.3%)
	>20%	0	0	49	589	n=131	Down classification (6.59

- There is no added value of measurement of CIMT in HTN for improving CV risk prediction.
- For those at intermediate risk, the addition of CIMT to an existing CV risk score is small, but statistically significant.

Common Carotid Intima-Media Thickness Measurements in Cardiovascular Risk Prediction

A Meta-analysis

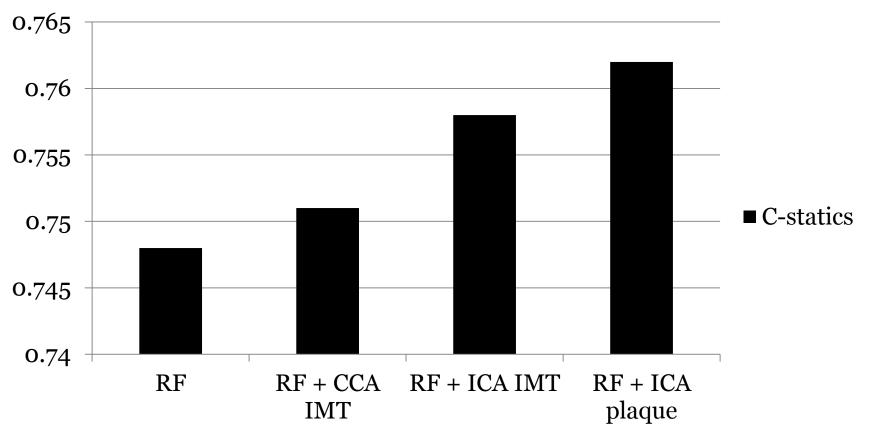
14 population-based cohorts contributing data for 45,828 individuals.

The addition of common CIMT measurements to the FRS was a/w small improvement in 10-year risk prediction of MI or stroke, but this improvement is unlikely to be of clinical importance

ORIGINAL ARTICLE

Carotid-Wall Intima–Media Thickness and Cardiovascular Events

Joseph F. Polak, M.D., M.P.H., Michael J. Pencina, Ph.D., Karol M. Pencina, Ph.D., Christopher J. O'Donnell, M.D., M.P.H., Philip A. Wolf, M.D., and Ralph B. D'Agostino, Sr., Ph.D.


Framingham Offspring Study cohort, composed of non-Hispanic whites, who were undergoing the sixth examination cycle, from February 1995 through September 1998.

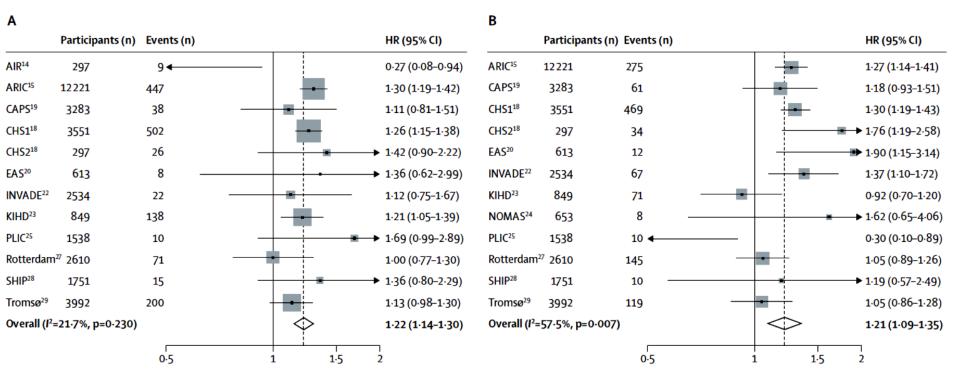
N Engl J Med 2011;365:213-21.

Table 2. Hazard Ratios for Cardiovascular Disease, According to Models with and without Common Carotid Artery (CCA) Intima–Media Thickness.*									
Risk Factor	Table 3. Hazard Ratios for Cardiovascular Disease, According to Models with and without Internal Carotid Artery (ICA) Intima–Media Thicknesses.*								
	Risk Factor	Model with Risk Factors Only		Model with Risk Factors and ICA Intima–Media Thickness		Model with Risk Factors and ICA Intima–Media Thickness >1.5 mm			
Sex, female) Age, per inci		Hazard Ratio or C Statistic (95% CI)	P Value	Hazard Ratio or C Statistic (95% CI)	P Value	Hazard Ratio or C Statistic (95% CI)	P Value		
Systolic pres	Sex, female vs. male	0.74 (0.57–0.95)	0.02	0.78 (0.61–1.01)	0.06	0.79 (0.61–1.02)	0.07		
Treatment fo	Age, per increase of 1 yr	1.05 (1.04–1.07)	<0.001	1.05 (1.03–1.06)	<0.001	1.04 (1.03–1.06)	<0.001		
Cholesterol,	Systolic pressure, per increase of 1 mm Hg	1.01 (1.01–1.02)	<0.001	1.01 (1.01–1.02)	<0.001	1.01 (1.00–1.02)	0.002		
Total	Treatment for high blood pressure, yes vs. no	1.55 (1.21–2.00)	<0.001	1.51 (1.18–1.95)	0.001	1.47 (1.14–1.89)	0.003		
HDL	Cholesterol, per increase of 1 mg/dl								
Diabetes, ye	Total	1.00 (1.00–1.01)	0.02	1.00 (1.00–1.01)	0.03	1.00 (1.00–1.01)	0.03		
Cigarette sm	HDL	0.98 (0.97–0.99)	<0.001	0.98 (0.97–0.99)	<0.001	0.98 (0.97–0.99)	<0.001		
CCA intima-	Diabetes, yes vs. no	1.44 (1.06–1.97)	0.02	1.41 (1.03–1.92)	0.03	1.38 (1.01–1.88)	0.04		
Per incre	Cigarette smoking, yes vs. no	2.23 (1.67–2.98)	<0.001	2.10 (1.57–2.81)	<0.001	1.97 (1.47–2.64)	<0.001		
Per incre	ICA intima-media thickness								
C statistic	Per increase of 1 mm			1.26 (1.16–1.36)	<0.001				
C Statistic	Per increase of 1 SD			1.21 (1.13–1.29)	<0.001				
	Thickness ≥1.5 mm, representing plaque					1.92 (1.49–2.47)	<0.001		
	C statistic 0.748 (0.719–0.776) 0.758 (0.730–0.785) 0.762 (0.734–0						9)		

HR for CV disease

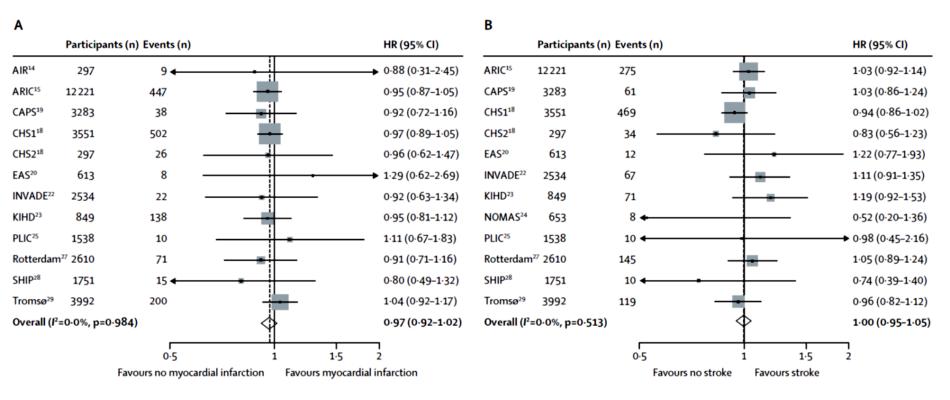
C-statics

- The maximum internal and mean CCA IMT both predict CV outcomes
- But only the maximum IMT of (and presence of plaque in) the ICA significantly (albeit modestly) improves the classification of risk of CV disease in the Framingham Offspring Study cohort

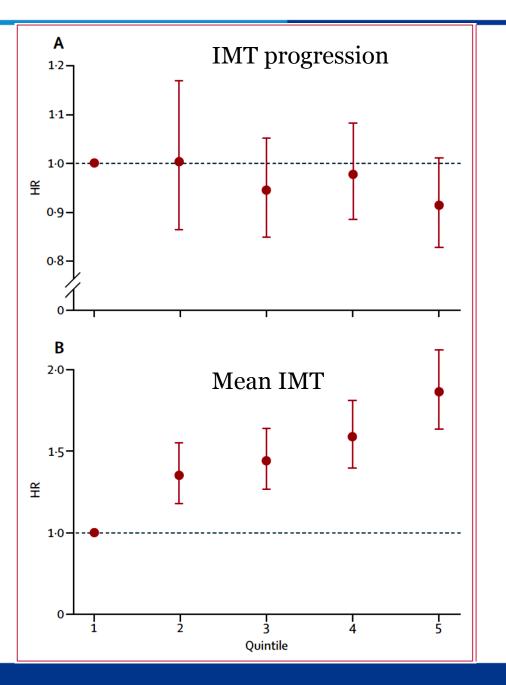

Follow up IMT: surrogate marker?

Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): a meta-analysis of individual participant data

Matthias W Lorenz, Joseph F Polak, Maryam Kavousi, Ellisiv B Mathiesen, Henry Völzke, Tomi-Pekka Tuomainen, Dirk Sander, Matthieu Plichart, Alberico L Catapano, Christine M Robertson, Stefan Kiechl, Tatjana Rundek, Moïse Desvarieux, Lars Lind, Caroline Schmid, Pronabesh DasMahapatra, Lu Gao, Kathrin Ziegelbauer, Michiel L Bots, Simon G Thompson, on behalf of the PROG-IMT Study Group

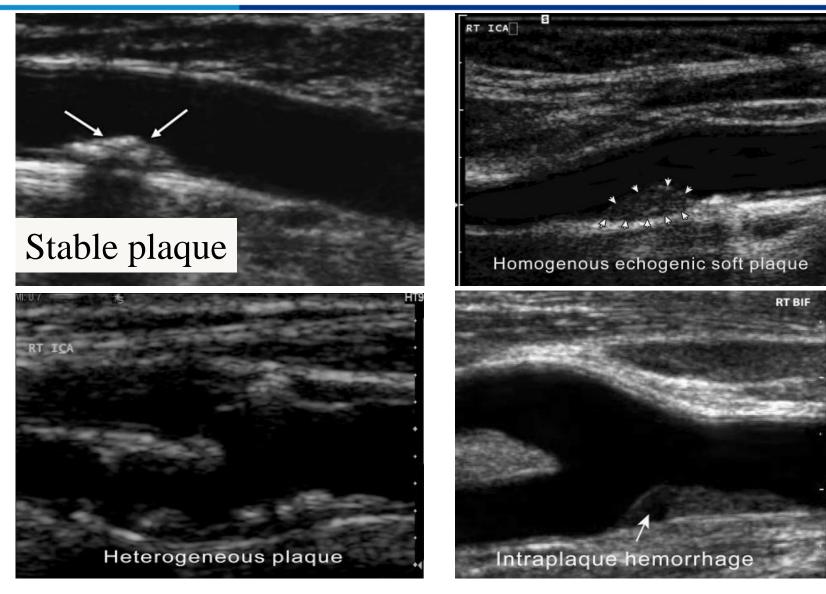

- Of 22 eligible studies, 16 with 36,984 participants
- two ultrasound visits 2–7 years (median 4 years) apart

Mean CCA IMT


- The association of cIMT (mean of baseline and follow-up) with the endpoints was significant and positive.
- These associations were attenuated after adjustment for vascular risk factors, as expected.

IMT progression?

- The association between cIMT progression assessed from two ultrasound scans and CV risk in the general population remains unproven.
- No conclusion can be derived for the use of cIMT progression as a surrogate in clinical trials


SNUH SEOUL NATIONAL UNIVERSITY BUNDANG HOSPITAL

• mean CCA IMT: good predictor

How about plaque?

SNUH SEOUL NATIONAL UNIVERSITY BUNDANG HOSPITAL

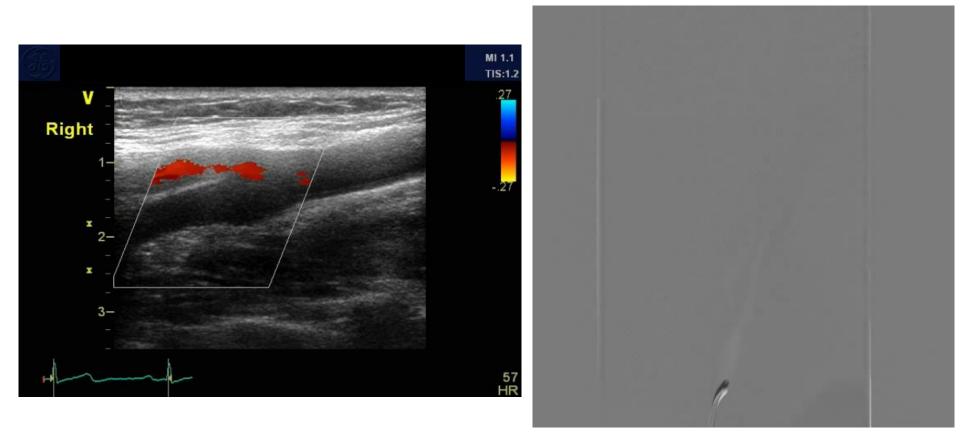
Unstable plaque

Rapid increase in size \rightarrow symptomatic

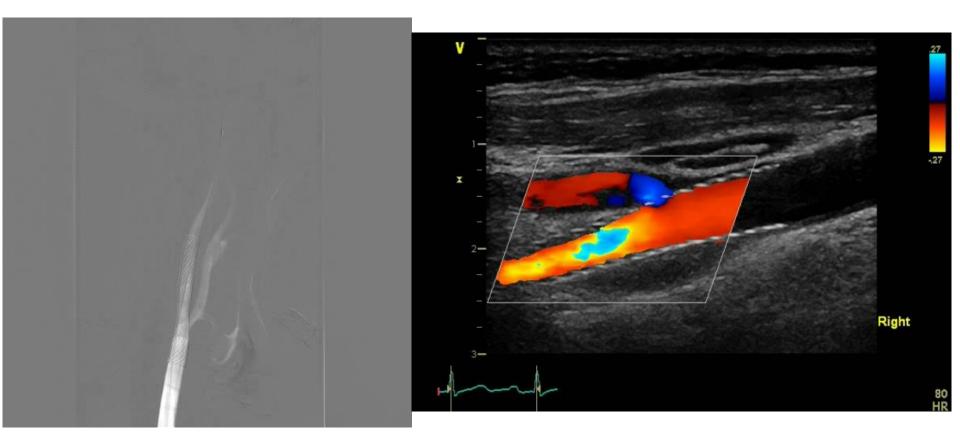
Significance of plaque morphology:

Plaque morphology as risk of cerebral events : natural course of carotid disease

Echolucent plaques= lipid¯ophage rich = unstable


- Asymptomatic
- Ulceration
- High grade + TIA
- High grade + stroke
- Echolucency vs density
- Thin/ruptured fibrous cap

risk of stroke


2 -5% / year 7.5% / year 13% / year 5-9% / year increase 2-5 fold *increase* > 10 fold?

Carotid stenosis

Tight ICA stenosis

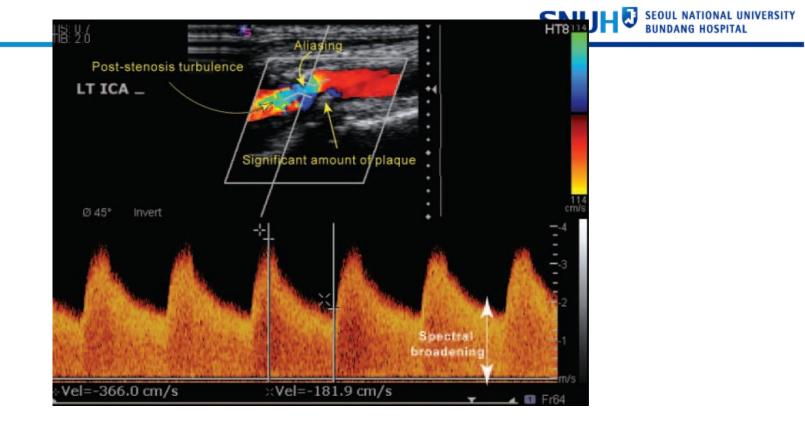
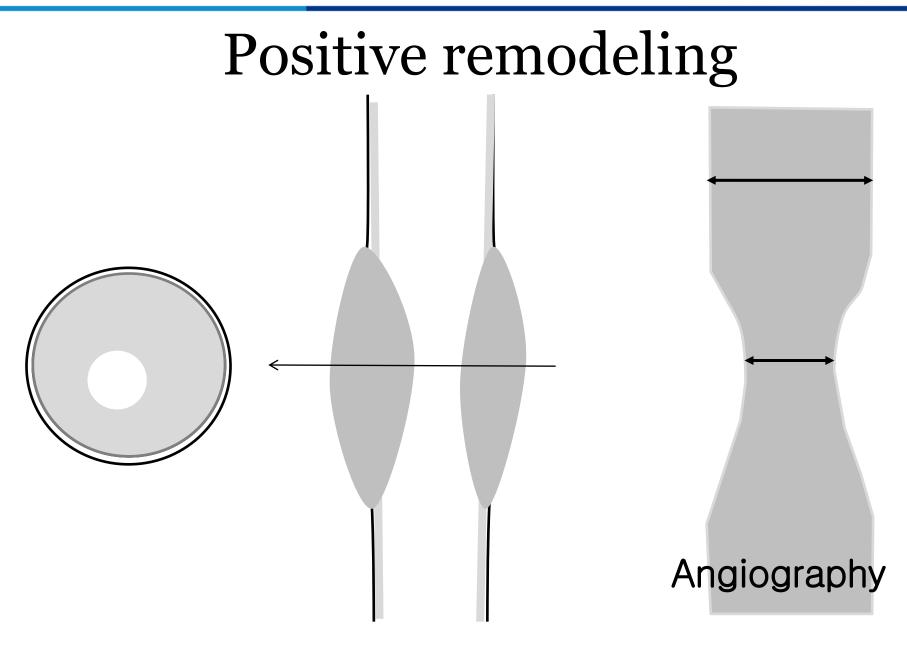


Table 1	
Criteria for Diagnosis of ICA Stenosis with Gray-Scale and Doppler US	

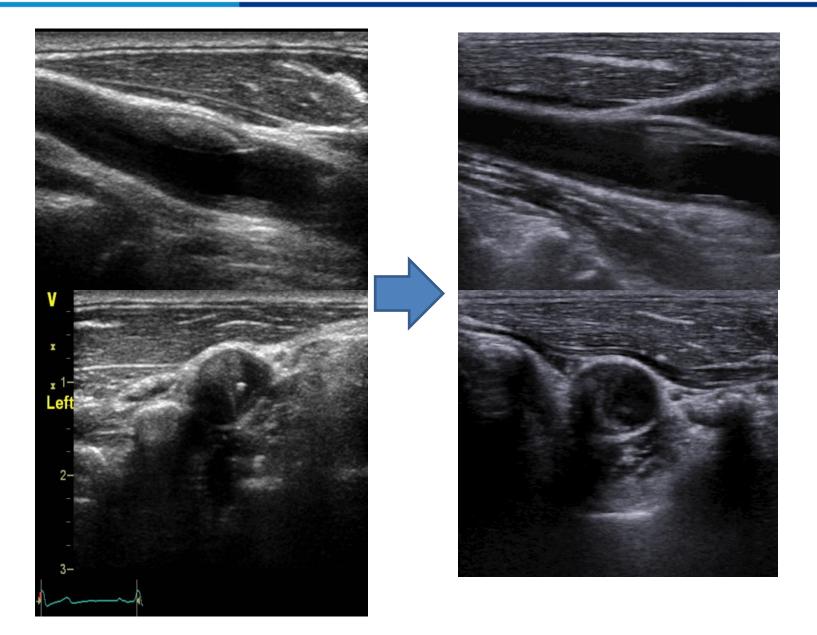
Degree of Stenosis (%)	Primary Parameters		Additional Parameters*	
	ICA PSV (cm/sec)	Degree of Plaque† (%)	ICA/CCA PSV Ratio	ICA EDV (cm/sec)
Normal	<125	None	<2.0	<40
<50	<125	<50	$<\!\!2.0$	$<\!\!40$
50-69	125-230	≥50	2.0 - 4.0	40-100
≥70 but less than near occlusion	>230	≥50	>4.0	>100
Near occlusion	High, low, or undetectable	Visible	Variable	Variable
Total occlusion	Undetectable	Visible, no detectable lumen	NA	NA


*EDV = end-diastolic velocity, NA = not applicable. †Estimated value based on the diameter reduction at gray-scale and color Doppler imaging.

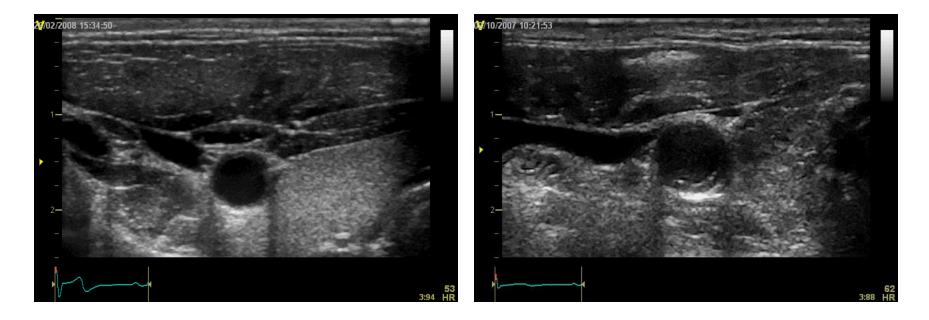

Sonographic features of severe ICA or CCA stenosis

- PSV > 230 cm/sec
- Plaque ($\geq 50\%$ DS)
- Color alaising despite a high velocity scale (≥ 100)
- ICA/CCA PSV ratio > 4.0
- High pitched sound at PW doppler imaging


Tight stenosis?



Significant stenosis by soft plaque

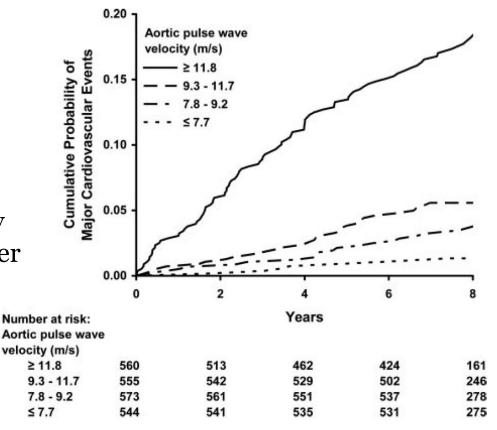


Vascular stiffness

- Compliance, ΔD/ΔP or ΔA/ΔP
 arterial stiffness at a site
- Augmentation index, ∆augmentation/PP

 systemic arterial stiffness
- Pulse wave velocity, PWV = D / ΔT
 - arterial stiffness at a segment

Compliance?



M/20 BP: 126/84 mmHg

M/75 BP: 146/68 mmHg

Arterial Stiffness and Cardiovascular Events : The Framingham Heart Study

- 2232 partipiciants
 - Median 7.8 years f/u
- Conclusion
 - Aortic PWV improves risk prediction when added to standard risk factors and may represent a valuable biomarker of CV disease risk in the community

Circulation. 2010;121:505-511

• The European guidelines for the management of hypertension and guidelines for CVD prevention in clinical practice *added* **aortic PWV** as a recommended test for TOD

AD, FHx

Conclusion

- Vascular disease screening and prevention
 - Who?
 - Age > 60 years with following risk (≥ 1)
 - DM, HTN, hyperlipidemia, smoking, CAD, of vascular disease
 - What?
 - Screening: non-painful, no discomfort, r
- effect

- carotid duplex, abdominal USG, ABI
- Disease specific test
 - TMT for claudication, PPG with thermal measurement, ABI,
 - Angiography, CT scan, MRI,