Pericardium: What We Still Do Not Know?

Epicardium in Cardiac Development and Disease

Jung-Sun Kim, MD, PhD
Department of Pathology Samsung Medical Center
Sungkyunkwan University School of Medicine, Seoul, Korea
Cellular Contribution to Heart Development

- **Heart field**
 - First / Second
 - Cardiomyocytes
 - Endocardial cells
- **Proepicardium**
 - Epicardium
 - Cardiac fibroblasts
 - Coronary SMC and endothelial cells
 - Some cardiomyocytes
- **Cardiac neural crest cells**
 - Cardiac outflow tracts
 - Aortic smooth muscle

Brade et al., Cold Spring Harb Perspect Med 2013;3:a013847
Proepicardial Organ

Chick embryo at HH stage 17
Mouse embryo at ED 9.75

Gittenberger-de Groot et al., Differentiation 2012;84:41-53
Molecular Characterization of Proepicardium

- Tbx18
- Wt1: prevent precocious differentiation
- Tcf21: repressor of cell differentiation, interstitial fibroblasts
- CFC1: PE to fully formed epicardium
- Raldh2: RA as a survival factor for PE
- Nephs1, Flrt, Ccbe1, Scx, Sema3D
- Also expressed in the developing kidney
 – Wt1, Tbx18, Tcg21, nephrin
Epicardium Formation

- Freely floating PE cell vesicles released from the PE enlage
- They flatten and spread out on contact to the naked myocardium, forming the epicardium (ED9.5-11.5 in mouse)
- VCAM, b4-a1-integrin

Brade et al., Cold Spring Harb Perspect Med 2013;3:a013847
Epicardial Derived Cells (EPDCs)

- Epithelial-to-mesenchymal transition (mouse ED11)
- EPDCs migrate into the subepicardial space - myocardial layer - subendocardial area.
- E-cadherin-podoplanin
- VCAM1-PDGFRα
- α6β4 integrin - fibronectin
Fate of EPDCs
Heterogeneity and Differentiation of the EPDCs

- Interstitial cardiac fibroblasts
- Coronary smooth muscle cells
- Adventitial fibroblasts

- Remained to be confirmed
 - Coronary endothelium
 - Myocardial cells
 - Purkinje fiber differentiation

- Predestined heterogeneous population vs. multipotent cell population
Myocardial Maturation

- Proliferation of myocytes
 - Raldh2 from EPDCs
- Compact layer formation
 - RA induced liver endothelium-derived EPO stimulating Igf in epicardial cells
- Spatio-temporal difference between developing right and left ventricle
Factors Regulating Myocardial-epicardial Interaction

- FGF2, FGF9, IGF2, PDGF from EP stimulate MC growth during development
 - RA and EPO signaling of EP is involved in expansion of MC compact layer
 - RA (liver) - EPO (liver) – EPO receptor (EP) – Igf2 (EP) – MC compact layer expansion
 - RA –FGF (EP) - FGFR signaling in MC proliferation

Factors Regulating Myocardial-epicardial Interaction

- Adhesion molecules to modulate the cell-cell interaction
 - Itga4 in PE, Vcam in MC

- PAR3
 - cell polarity of PE cells
 - determine whether cells remain part of the epicardium or undergo EMT to migrate into MC
Contribution of Epicardium in Cardiac Valve Formation

- EMT in the atrioventricular and ventriculoarterial grooves
- Formation of the fibrous atrioventricular annulus
- Annuli and semilunar valves

Wessels et al., Circ Res 1996;78:110-117
Formation of Coronary Vessels

- Primitive coronary plexus around E11.5 (mouse)
- Primary coronary vessels spread over the VT at E13.5
- EPDCs surround main coronary vessel to differentiate into smooth muscle cells
Epicardial-myocardial Signaling Pathways in Coronary Vascular Development

Olivery and Svensson Circ Res 2010;106:818-832
Epicardium in Congenital and Adult Heart Disease

- Non-compaction cardiomyopathy
- Deficient annulus fibrosis and valve formation
- Coronary arterial abnormalities
Epicardial Outgrowth Inhibition in Chick Embryos

Abnormal Epicardial Development and Cardiac Malformation in Pod KO mice

Mahtab et al., Dev Dyn 2008;237:847-857
Non-Compaction Cardiomyopathy

Ival-Bernal Histol Histopathol 2010;25:495-503

Ikeda et al J Cardiol 2015;65:91-97
Valvulopathies

• Chick model of PEO inhibition
 – Absence of AV valve
 – Ebstein’s anomaly

• Bicuspid aortic valve
 – Notch 1 mutation
Cardiac Conduction System Anomalies

- Purkinje fiber differentiation
- Deficient formation of the fibrous annulus – accessory pathways
- Demonstrated in avian embryos after PEO inhibition
- No reports on mouse models with disturbed epicardial development and deficient annulus fibrosis formation
Coronary Vascular Anomalies

• Undifferentiated microvascular endothelial plexus to differentiated coronary vessels
• Congenital pattern variations
• Abnormal ventriculo-coronary-arterial communications
• Single coronary ostia
• Pinpoint coronary orifice formation
Coronary Vascular Anomalies

Quiescent Epicardium in Adult Heart

- Early embryonic marker genes (Raldh2) switched off
- Loss of epicardial potential by P4 in the mouse
- Loss of myocardial responsiveness to epicardial paracrine secretions
Rapid activation of epicardial cells in the zebrafish heart in response to ventricular wounding

Lepilina et al., cell 2006;127: 607-619
Epicardial Signals in Mammalian Heart Development and Lower Vertebrate Heart Regeneration

Epicardium in Cardiovascular Repair

- The potential of the adult epicardial cells after myocardial infarction
- Mouse model of MI
 - C-kit+ subepicardial EPDCs
 - Renewed epicardial activity
 - Stem cell characteristics
 - Reactivation of epithelial to mesenchymal transition
 - No differentiation into a myocardial or endothelial phenotype
 - Paracrine factors stimulating angiogenesis
 - Neonatal regeneration window
Summary

• Epicardium represents a critical developmental source of cells and signals

• Epicardium in heart regeneration
 – Therapeutic potential of modulating epicardial signals to instruct heart repair in adult mammals