Perioperative Consultation for Heart Failure

Min-Seok Kim, MD, PhD

Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
In 2013, national prevalence of HF is estimated as 1.53% (~52,000 patients)
Patient number for operation per 100,000 persons in Korea

<table>
<thead>
<tr>
<th>Year</th>
<th>Patient Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2514</td>
</tr>
<tr>
<td>2008</td>
<td>2671</td>
</tr>
<tr>
<td>2010</td>
<td>2929</td>
</tr>
<tr>
<td>2012</td>
<td>2956</td>
</tr>
</tbody>
</table>
Epidemiology

• The number of patients with HF requiring preoperative assessment may be increasing in Korea.
HF as a significant risk for perioperative morbidity and mortality

- Medicare claims data from 1997 to 1998

<table>
<thead>
<tr>
<th></th>
<th>HF (n = 1,532)</th>
<th>CAD (n = 1,757)</th>
<th>Control (n = 44,512)</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome: 30-day mortality (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed (%)</td>
<td>15.4 (13.6–17.3)</td>
<td>6.6 (5.5–7.8)</td>
<td>6.1 (5.9–6.3)</td>
<td></td>
</tr>
<tr>
<td>Risk-adjusted (%)</td>
<td>11.7 (10.2–13.1)</td>
<td>6.6 (5.4–7.8)</td>
<td>6.2 (6.0–6.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mortality during surgery admission (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed (%)</td>
<td>10.7 (9.2–12.0)</td>
<td>5.0 (4.0–6.1)</td>
<td>4.1 (3.9–4.2)</td>
<td></td>
</tr>
<tr>
<td>Risk-adjusted (%)</td>
<td>7.9 (6.8–9.0)</td>
<td>4.6 (3.6–5.5)</td>
<td>4.1 (3.9–4.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>30-day mortality in discharged patients (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed (%)</td>
<td>8.4 (6.9–9.9)</td>
<td>2.9 (2.1–3.7)</td>
<td>3.3 (3.1–3.5)</td>
<td></td>
</tr>
<tr>
<td>Risk-adjusted (%)</td>
<td>6.5 (5.4–7.6)</td>
<td>3.3 (2.4–4.3)</td>
<td>3.2 (3.0–3.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Readmission rate within 30 days (95% CI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed (%)</td>
<td>23.6 (21.5–25.8)</td>
<td>15.5 (13.8–17.2)</td>
<td>10.9 (10.6–11.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Risk-adjusted (%)</td>
<td>20.0 (18.3–21.8)</td>
<td>14.2 (12.5–15.8)</td>
<td>11.0 (10.7–11.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean length of stay (days ± SD)</td>
<td>11.0 ± 10.6</td>
<td>9.3 ± 10.5</td>
<td>8.9 ± 11.1</td>
<td></td>
</tr>
<tr>
<td>Mean length of ICU stay (days ± SD)</td>
<td>4.9 ± 6.0</td>
<td>4.2 ± 5.2</td>
<td>4.1 ± 5.6</td>
<td>0.015</td>
</tr>
<tr>
<td>Patients with an ICU stay (%)</td>
<td>44.7</td>
<td>48.2</td>
<td>28.0</td>
<td>0.053</td>
</tr>
<tr>
<td>Mean time to readmission (days ± SD)</td>
<td>13.0 ± 8.5</td>
<td>13.3 ± 8.5</td>
<td>13.2 ± 8.4</td>
<td>0.709</td>
</tr>
</tbody>
</table>
HF as a significant risk for perioperative morbidity and mortality

- Population-based data analysis of 4 cohorts of 38,047 consecutive patients

30-day perioperative mortality (blue), rehospitalization (red), and cardiac rehospitalization (green)
2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery
Step 1: In patients scheduled for surgery with risk factors for or known CAD, determine the urgency of surgery. If an emergency, then determine the clinical risk factors that may influence perioperative management and proceed to surgery with appropriate monitoring and management strategies based on the clinical assessment (see Section 2.1 for more information on CAD). (For patients with symptomatic HF, VHD, or arrhythmias, see Sections 2.2, 2.4, and 2.5 for information on evaluation and management.)
Step 2: If the surgery is urgent or elective, determine if the patient has an ACS. If yes, then refer patient for cardiology evaluation and management according to GDMT according to the UA/NSTEMI and STEMI CPGs (18, 20).
Step 3: If the patient has risk factors for stable CAD, then estimate the perioperative risk of MACE on the basis of the combined clinical/surgical risk. This estimate can use the American College of Surgeons NSQIP risk calculator (http://www.surgicalriskcalculator.com) or incorporate the RCRI (131) with an estimation of surgical risk. For example, a patient undergoing very low-risk surgery (e.g., ophthalmologic surgery), even with multiple risk factors, would have a low risk of MACE, whereas a patient undergoing major vascular surgery with few risk factors would have an elevated risk of MACE (Section 3).
American College of Surgeons NSQIP Calculator

- 21 predictors of risk for major cardiac complications
- NSQIP MICA risk-prediction rule created in 2011
- 525 US hospitals participated
- > 1 million operations included
- Outperformed RCRI in discriminative power (esp. with vascular)
- Calculates risk of:
 - MACE, death, PNA, VTE, ARF, return to OR, unplanned intubation
 - discharge to rehab/nursing home, surgical infection, UTI
- Predicts length of hospital stay
- Limitations:
 - Not validated outside NSQIP
 - ASA status
 - Functional status/dependence
2011 NSQIP MICA (Myocardial Infarction and Cardiac Arrest) risk evaluation (Gupta perioperative cardiac risk, http://www.surgicalriskcalculator.com/miorcardiacarrest)

Gupta Perioperative Cardiac Risk

By clicking on the “Submit” button below, you acknowledge that you have read, understand, and agree to be bound by the terms of the QxMD Online Calculator End User Agreement.

Estimate risk of perioperative myocardial infarction or cardiac arrest.

- **Age:** 65
- **Creatinine:** ≥1.5 mg/dL / 133 μmol/L
- **ASA Class:** ASA 2
 - ASA 1 = Normal healthy patient
 - ASA 2 = Patients with mild systemic disease
 - ASA 3 = Patients with severe systemic disease
 - ASA 4 = Patients with severe systemic disease that is a constant threat to life
 - ASA 5 = Moribund patients who are not expected to survive without the operation
- **Preoperative Function:** Partially Dependent
- **Procedure:** Neck (Thyroid and Parathyroid)

Submit
2011 NSQIP MICA (Myocardial Infarction and Cardiac Arrest) risk evaluation (Gupta perioperative cardiac risk, http://www.surgicalriskcalculator.com/miocardiacarrest)

Gupta Perioperative Cardiac Risk

Estimated risk of perioperative myocardial infarction or cardiac arrest: 0.3 %.

About this calculator

This risk calculator provides an estimate of perioperative cardiac risk for individual patients based on a model derived from a large sample (>400 000) of patients. This is intended to supplement the clinician's own judgment and should not be taken as absolute. Certain limitations exist such as absence of information on preoperative stress test, echocardiography, arrhythmia, and aortic valve disease. Unfortunately, known/remote coronary artery disease (except prior PCI and cardiac surgery) was also not controlled for in the multivariate analysis. In spite of the absence of these variables, the predictive ability of the calculator as measured by c-statistic was 0.88 (88%), much higher than previous models such as Revised Cardiac Risk Index.

The details of the methodology are provided in the published paper.

Citations

• 6 predictors of complications
• Major cardiac complications included:
 • Myocardial infarction
 • Ventricular fibrillation
 • Cardiac arrest
 • Complete heart block
 • Pulmonary edema
• 0-1 predictors = low risk
• 2+ = high risk

Revised Cardiac Risk Index

1. History of ischemic heart disease
2. History of congestive heart failure
3. History of cerebrovascular disease (stroke or transient ischemic attack)
4. History of diabetes requiring preoperative insulin use
5. Chronic kidney disease (creatinine > 2 mg/dL)
6. Undergoing suprainguinal vascular, intraperitoneal, or intrathoracic surgery

Risk for cardiac death, nonfatal myocardial infarction, and nonfatal cardiac arrest:
0 predictors = 0.4%, 1 predictor = 0.9%, 2 predictors = 6.6%, ≥3 predictors = >11%
RCRI - Revised Cardiac Risk Index

http://www.mdcalc.com/revised-cardiac-risk-index-for-pre-operative-risk/

Revised Cardiac Risk Index for Pre-Operative Risk

Estimates risk of cardiac complications after surgery.

High-Risk Surgery

- **Intraarterial**
- **Intraoperative**
- **Supraaortic vascular**

History of ischemic heart disease

- History of MI
- History of positive exercise test
- Current chest pain considered due to myocardial ischemia
- Use of nitrate therapy
- ECG with pathological Q waves

History of congestive heart failure

- Pulmonary edema, bilateral rales or S3 gallop
- Paroxysmal nocturnal dyspnea
- CXR showing pulmonary vascular redistribution

History of cerebrovascular disease

- Prior TIA or stroke

Pre-operative treatment with insulin

- +1 = NO

Pre-operative creatinine >153 mmol/L

- +1 = NO

Risk of Major Cardiac Event (see below)

0 points

Class I Risk

0.4%

ENCOURAGE YOUR PATIENTS TO SPEAK FROM THE HEART

Obtain free chronic angina tools for your patients at HelpThemSpeak.com

Dept. of Cardiology, Asan Medical Center
Step 4: If the patient has a low risk of MACE (<1%), then no further testing is needed, and the patient may proceed to surgery (Section 3).
Step 5: If the patient is at elevated risk of MACE, then determine functional capacity with an objective measure or scale such as the DASI (133). If the patient has moderate, good, or excellent functional capacity (≥4 METs), then proceed to surgery without further evaluation (Section 4.1).
Step 6: If the patient has poor (<4 METs) or unknown functional capacity, then the clinician should consult with the patient and perioperative team to determine whether further testing will impact patient decision making (e.g., decision to perform original surgery or willingness to undergo CABG or PCI, depending on the results of the test) or perioperative care. If yes, then pharmacological stress testing is appropriate. In those patients with unknown functional capacity, exercise stress testing may be reasonable to perform. If the stress test is abnormal, consider coronary angiography and revascularization depending on the extent of the abnormal test. The patient can then proceed to surgery with GDMT or consider alternative strategies, such as noninvasive treatment of the indication for surgery (e.g., radiation therapy for cancer) or palliation. If the test is normal, proceed to surgery according to GDMT (Section 5.3).
Step 7: If testing will not impact decision making or care, then proceed to surgery according to GDMT or consider alternative strategies, such as noninvasive treatment of the indication for surgery (e.g., radiation therapy for cancer) or palliation.
Case review
• M/59
• For radical cystectomy d/t bladder cancer
• 3VD, s/p CABG (2002.1)
• DM, CKD (Cr 2.83 md/dL)
• DOE: NYHA Fc II, Chest pain (-)
• CXR: Bilateral pleural effusion
• EKG: NSR, LAE, ST-T wave abnormality, r/o lateral ischemia
• TTE: EF 31%, ischemic insult of RCA & LAD territory, moderate MR, resting pulmonary HTN (TR Vmax 3.8 m/s, TVPG 61mmHg)

1. pul. HTN 원인이 불명합니다. pul. embolism 가능성 확인 위해 d-dimer을 먼저 확인하여 D-dimer 상승이 확인되면, 가능하면 pul. embolism CT까지 검사하여 확인해 보는 것이 좋을 것으로 보입니다.

2. TTE상 ischemic insult가 확인되는 환자로 thallium SPECT 결과까지 확인이 필요할 것으로 보입니다.
- **TI spect:**
 Fixed large sized moderate to severely decreased perfusion in apex to mid anteroseptum, basal inferior, and mid-bassal inferolateral wall

- **Coronary CT:**
 nonvisualized T-RA to OM graft patent LIMA to LAD, SVG to PDA total occlusion of pLAD, D1, OM, dLCx severe stenosis of RCA

1. 3VD로 CABG 시행했던 환자로 현재 ACS 증상 없는 상태이며, graft 모두 patent한 상태로 수술 진행이 가능할 것으로 보입니다.

2. 다만 EchoCG에서 pul. HTN 및 mild LV dysfunction을 보이고 있어 수술 진행후에 volume overload에 주의를 기울여 주시고 2~3일간은 daily ECG & cardiac enz. & CXR f/u 부탁드립니다.

3. HF에 대하여 aldactone 12.5mg qd, digoxin 0.125mg qd를 추가하실 것을 추천드립니다.
Questions

Q1. Is it OK for op now?
Q2. What is the risk of MACE?
Q3. Further w/u?
Q4. Periop management
Q5. Periop monitoring
Patient scheduled for surgery with known or risk factors for CAD* (Step 1)

- Emergency: Yes → Clinical risk stratification and proceed to surgery
- Emergency: No → ACS† (Step 2)

ACS† (Step 2)
- Yes → Evaluate and treat according to GDMT†
- No → Estimated perioperative risk of MACE based on combined clinical/surgical risk (Step 3)

Estimated perioperative risk of MACE based on combined clinical/surgical risk (Step 3)
- Low risk (<1%) (Step 4)
 - No further testing (Class IIc NB)
 - Proceed to surgery
- Elevated risk (Step 5)
 - Moderate or greater (≥10 METs) functional capacity
 - Moderate/Good (≥4–10 METs)
 - No further testing (Class IIb)
 - Proceed to surgery
 - Poor OR unknown functional capacity (<4 METs)
 - Will further testing impact decision making OR perioperative care? (Step 6)
 - Yes → Pharmacologic stress testing (Class IIa)
 - Proceed to surgery
 - If normal
 - If abnormal
 - Coronary revascularization according to existing CPGs (Class I)
 - No → Proceed to surgery according to GDMT OR alternate strategies (noninvasive treatment, palliation) (Step 7)
 - No further testing (Class IIc)

*See Sections 2.2, 2.4, and 2.5 for recommendations for patients with symptomatic HF, VHD, or arrhythmias.
†See UA/NSTEMI and STEMI CPGs (Table 2).
Questions

Q1. Is it OK for op now? Mostly,,,
Q2. What is the risk of MACE?
Q3. Further w/u?
Q4. Periop management
Q5. Periop monitoring
Active or unstable cardiac condition(s)

- Unstable angina pectoris
- Acute heart failure
- Significant cardiac arrhythmias
- Symptomatic valvular heart disease
- Recent myocardial infarction and residual myocardial ischemia

- Postpone the procedure
- Treatment options should be discussed in a multidisciplinary team involving all peri-operative care physicians

Questions

Q1. Is it OK for op now?
Q2. What is the risk of MACE?
Q3. Further w/u?
Q4. Periop management
Q5. Periop monitoring
Goldman Cardiac Risk factors

- Third heart sound (S3) 11
- Elevated jugulovenous pressure 11
- Myocardial infarction in past 6 months 10
- ECG: premature arterial contractions or any rhythm other than sinus 7
- ECG shows >5 premature ventricular contractions per minute 7
- Age >70 years 5
- Emergency procedure 4
- Intra-thoracic, intra-abdominal or aortic surgery 3
- Poor general status, metabolic or bedridden 3

<table>
<thead>
<tr>
<th>score</th>
<th>death</th>
<th>Severe cardiovascular complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 25</td>
<td>56%</td>
<td>22%</td>
</tr>
<tr>
<td>< 26</td>
<td>4%</td>
<td>17%</td>
</tr>
<tr>
<td>< 6</td>
<td>0.2%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

RCRI - Revised Cardiac Risk Index

- 6 predictors of complications
- Major cardiac complications included:
 - Myocardial infarction
 - Ventricular fibrillation
 - Cardiac arrest
 - Complete heart block
 - Pulmonary edema
- 0-1 predictors = low risk
- 2+ = high risk

<table>
<thead>
<tr>
<th>Revised Cardiac Risk Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. History of ischemic heart disease</td>
</tr>
<tr>
<td>2. History of congestive heart failure</td>
</tr>
<tr>
<td>3. History of cerebrovascular disease (stroke or transient ischemic attack)</td>
</tr>
<tr>
<td>4. History of diabetes requiring preoperative insulin use</td>
</tr>
<tr>
<td>5. Chronic kidney disease (creatinine > 2 mg/dL)</td>
</tr>
<tr>
<td>6. Undergoing suprainguinal vascular, intraperitoneal, or intrathoracic surgery</td>
</tr>
</tbody>
</table>

Risk for cardiac death, nonfatal myocardial infarction, and nonfatal cardiac arrest:
- 0 predictors = 0.4%
- 1 predictor = 0.9%
- 2 predictors = 6.6%
- ≥3 predictors = >11%
Questions

Q1. Is it OK for op now?
Q2. What is the risk of MACE?
Q3. Further w/u?
Q4. Periop management
Q5. Periop monitoring
Risk of HF Based on LVEF

- Severely decreased (<30%) LVEF is an independent contributor to perioperative outcome and a long-term risk factor for death in HF patients.
The presence of perioperative diastolic dysfunction as assessed with V_p is an independent predictor of postoperative CHF after major vascular surgery.
Asymptomatic LV dysfxn on perioperative outcomes

- Prospective cohort study on the role of preoperative echocardiography in 1005 consecutive patients undergoing elective vascular surgery

30-day cardiovascular event rates, patients for vascular surgery

- Symptomatic HF
- Asymptomatic systolic LV dysfunction
- Asymptomatic diastolic LV dysfunction
- Normal LV function

Log rank: $p < 0.001$

Assessment of LV Function

Recommendations

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is reasonable for patients with dyspnea of unknown origin to undergo preoperative evaluation of LV function.</td>
<td>Ila</td>
<td>C</td>
</tr>
<tr>
<td>It is reasonable for patients with HF with worsening dyspnea or other change in clinical status to undergo preoperative evaluation of LV function.</td>
<td>Ila</td>
<td>C</td>
</tr>
<tr>
<td>Reassessment of LV function in clinically stable patients with previously documented LV dysfunction may be considered if there has been no assessment within a year.</td>
<td>Ilb</td>
<td>C</td>
</tr>
<tr>
<td>Routine preoperative evaluation of LV function is not recommended.</td>
<td>III: No Benefit</td>
<td>B</td>
</tr>
</tbody>
</table>
Role of natriuretic peptides in perioperative risk of HF

- Unadjusted ORs for a preoperative BNP or NT-proBNP concentration above the optimal general cut point (BNP 116 pg/ml, NT-proBNP 277.5 pg/ml) in predicting cardiovascular outcomes 30 days after surgery.

<table>
<thead>
<tr>
<th>Study</th>
<th>BNP above cut point</th>
<th>BNP below cut point</th>
<th>OR (random)</th>
<th>Weight %</th>
<th>OR (random)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N</td>
<td>n/N</td>
<td>95%CI</td>
<td></td>
<td>95% CI</td>
</tr>
<tr>
<td>Gibson</td>
<td>22/33</td>
<td>2/96</td>
<td>20.40</td>
<td></td>
<td>94.0 (19.43, 454.78)</td>
</tr>
<tr>
<td>Cuthbertson</td>
<td>2/57</td>
<td>0/13</td>
<td>10.14</td>
<td></td>
<td>1.22 (0.06, 26.84)</td>
</tr>
<tr>
<td>Mahla</td>
<td>14/85</td>
<td>5/133</td>
<td>25.31</td>
<td></td>
<td>5.05 (1.75, 14.59)</td>
</tr>
<tr>
<td>Bolliger</td>
<td>2/38</td>
<td>2/95</td>
<td>16.79</td>
<td></td>
<td>2.58 (0.35, 19.04)</td>
</tr>
<tr>
<td>Biccard</td>
<td>13/53</td>
<td>13/244</td>
<td>27.36</td>
<td></td>
<td>5.78 (2.50, 13.36)</td>
</tr>
</tbody>
</table>

Total (95% CI): 266/581

Test for heterogeneity, Chi²=13.37, df=4 (P=0.001), I²=70.1%
Test for overall effect: Z=3.27 (P=0.001)

Role of natriuretic peptides in perioperative risk of HF

- Preoperative natriuretic peptide levels significantly improve the predictive performance of the Revised Cardiac Risk Index (RCRI).

<table>
<thead>
<tr>
<th>RCRI Risk Category</th>
<th>MACE</th>
<th>No MACE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk</td>
<td>19 (5.9%)</td>
<td>301 (94.1%)</td>
<td>320</td>
</tr>
<tr>
<td>Intermediate risk</td>
<td>45 (9.5%)</td>
<td>431 (90.5%)</td>
<td>476</td>
</tr>
<tr>
<td>High risk</td>
<td>11 (20.4%)</td>
<td>43 (79.6%)</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NP-Reclassified Risk Category</th>
<th>MACE</th>
<th>No MACE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk</td>
<td>22 (3.7%)</td>
<td>574 (96.3%)</td>
<td>596</td>
</tr>
<tr>
<td>Intermediate risk</td>
<td>14 (15.1%)</td>
<td>79 (84.9%)</td>
<td>93</td>
</tr>
<tr>
<td>High risk</td>
<td>39 (24%)</td>
<td>122 (76%)</td>
<td>161</td>
</tr>
</tbody>
</table>
Questions

Q1. Is it OK for op now?
Q2. What is the risk of MACE?
Q3. Further w/u?
Q4. Periop management
Q5. Periop monitoring
Preoperative stability of HF is important

- In a retrospective single-center cohort study of patients with stable HF who underwent elective noncardiac surgery between 2003 and 2006, perioperative mortality rates for patients with stable HF were not higher than for the control group without HF (p=0.09).
Perioperative Beta-Blocker Therapy

2014 ACC/AHA guideline

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta blockers should be continued in patients undergoing surgery who have been on beta blockers chronically.</td>
<td>I</td>
<td>B<sup>SR</sup></td>
</tr>
<tr>
<td>It is reasonable for the management of beta blockers after surgery to be guided by clinical circumstances, independent of when the agent was started.</td>
<td>IIa</td>
<td>B<sup>SR</sup></td>
</tr>
<tr>
<td>In patients with intermediate- or high-risk myocardial ischemia noted in preoperative risk stratification tests, it may be reasonable to begin perioperative beta blockers.</td>
<td>IIb</td>
<td>C<sup>SR</sup></td>
</tr>
<tr>
<td>In patients with 3 or more RCRI risk factors (e.g., diabetes mellitus, HF, CAD, renal insufficiency, cerebrovascular accident), it may be reasonable to begin beta blockers before surgery.</td>
<td>IIb</td>
<td>B<sup>SR</sup></td>
</tr>
</tbody>
</table>
Perioperative Beta-Blocker Therapy

<table>
<thead>
<tr>
<th>Propensity-Matched Cohort</th>
<th>Odds Ratio (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCRI score 0</td>
<td>1.43 (1.29–1.58)</td>
</tr>
<tr>
<td>RCRI score 1</td>
<td>1.13 (0.99–1.30)</td>
</tr>
<tr>
<td>RCRI score 2</td>
<td>0.90 (0.75–1.08)</td>
</tr>
<tr>
<td>RCRI score 3</td>
<td>0.71 (0.56–0.91)</td>
</tr>
<tr>
<td>RCRI score ≥4</td>
<td>0.57 (0.42–0.76)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entire Study Cohort</th>
<th>Odds Ratio (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCRI score 0</td>
<td>1.36 (1.27–1.45)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0.96 (0.82–1.13)</td>
</tr>
<tr>
<td>RCRI score 1</td>
<td>1.09 (1.01–1.19)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.28 (1.10–1.50)</td>
</tr>
<tr>
<td>Ischemic heart disease</td>
<td>1.12 (0.95–1.31)</td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>1.03 (0.82–1.23)</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>1.01 (0.76–1.35)</td>
</tr>
<tr>
<td>High-risk surgery</td>
<td>0.94 (0.84–1.05)</td>
</tr>
</tbody>
</table>

RCRI score 2	0.88 (0.80–0.98)
RCRI score 3	0.71 (0.63–0.80)
RCRI score ≥4	0.58 (0.50–0.67)
Perioperative Beta-Blocker Therapy

Figure 1. Thirty-Day Mortality Propensity Model

A. All surgery

<table>
<thead>
<tr>
<th>No. of Revised Cardiac Risk Index predictors</th>
<th>Exposed</th>
<th>Not Exposed</th>
<th>Exposed</th>
<th>Not Exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients</td>
<td>37,805</td>
<td>37,805</td>
<td>426</td>
<td>583</td>
</tr>
<tr>
<td>0</td>
<td>12,250</td>
<td>12,250</td>
<td>67</td>
<td>53</td>
</tr>
<tr>
<td>1</td>
<td>16,057</td>
<td>16,057</td>
<td>166</td>
<td>186</td>
</tr>
<tr>
<td>2</td>
<td>6,795</td>
<td>6,795</td>
<td>111</td>
<td>176</td>
</tr>
<tr>
<td>3</td>
<td>2,090</td>
<td>2,090</td>
<td>59</td>
<td>110</td>
</tr>
<tr>
<td>>4</td>
<td>613</td>
<td>613</td>
<td>23</td>
<td>58</td>
</tr>
</tbody>
</table>

B. Vascular surgery

<table>
<thead>
<tr>
<th>No. of Revised Cardiac Risk Index predictors</th>
<th>Exposed</th>
<th>Not Exposed</th>
<th>Exposed</th>
<th>Not Exposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients</td>
<td>3,999</td>
<td>3,999</td>
<td>55</td>
<td>62</td>
</tr>
<tr>
<td>0</td>
<td>857</td>
<td>857</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1,593</td>
<td>1,593</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>1,033</td>
<td>1,033</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>403</td>
<td>403</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>>4</td>
<td>113</td>
<td>113</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Relative Risk (95% CI)
Perioperative RAS blocker Therapy

2014 ACC/AHA guideline

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuation of ACE inhibitors or angiotensin-receptor ARBs perioperatively is reasonable.</td>
<td>IIa</td>
<td>B</td>
</tr>
<tr>
<td>If ACE inhibitors or ARBs are held before surgery, it is reasonable to restart as soon as clinically feasible postoperatively.</td>
<td>IIa</td>
<td>C</td>
</tr>
</tbody>
</table>

2014 ESC guideline

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>In patients with heart failure and systolic dysfunction, ACEI should be considered before surgery</td>
<td>IIa</td>
<td>C</td>
</tr>
</tbody>
</table>
Hemodynamic Assist Devices

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of hemodynamic assist devices may be considered when urgent or emergency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>noncardiac surgery is required in the setting of acute severe cardiac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dysfunction (i.e., acute MI, cardiogenic shock) that cannot be corrected</td>
<td>Iib</td>
<td>C</td>
</tr>
<tr>
<td>before surgery.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Q1. Is it OK for op now?
Q2. What is the risk of MACE?
Q3. Further w/u?
Q4. Periop management
Q5. Periop monitoring
Perioperative Use of Pulmonary Artery Catheters

The use of pulmonary artery catheterization may be considered when underlying medical conditions that significantly affect hemodynamics (i.e., HF, severe valvular disease, combined shock states) cannot be corrected before surgery.

Routine use of pulmonary artery catheterization in patients, even those with elevated risk, is not recommended.

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The use of pulmonary artery catheterization may be considered when underlying</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>medical conditions that significantly affect hemodynamics (i.e., HF, severe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>valvular disease, combined shock states) cannot be corrected before surgery.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine use of pulmonary artery catheterization in patients, even those with</td>
<td>III: No Benefit</td>
<td>A</td>
</tr>
<tr>
<td>elevated risk, is not recommended.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2014 ACC/AHA guideline
Perioperative Use of Pulmonary Artery Catheters

- RCT with 1994 patients who underwent surgery
Summary

- Most of patients with compensated HF can undergo surgery. However, they have an elevated risk of cardiac events.
- Especially, if they have history of IHD, stroke, DM, or CKD, or undergo major surgery, perioperative risk for MACE will increase up to more than 6%.
- Preoperative compensation may reduce the risk.
- The estimation of BNP and HF medication may be helpful to stratify the risk and reduce cardiac events, but there is a paucity of data.
- Perioperative monitoring is not sufficiently established.
Thank You for Your Attention!!!
Case

- M/59
- For radical cystectomy d/t bladder cancer
- 3VD, s/p CABG (2002.1.)
- DM, CKD (Cr 2.83 mg/dL)

- DOE: NYHA Fc II, Chest pain (-)
- CXR: Bilateral pleural effusion
- EKG: NSR, LAE, ST-T wave abnormality, r/o lateral ischemia
- TTE: EF 31%, ischemic insult of RCA & LAD territory, moderate MR, resting pulmonary HTN (TR Vmax 3.8 m/s, TVPG 61mmHg)
Case

- M/59
- For radical cystectomy d/t bladder cancer
- 3VD, s/p CABG (2002.1.)
- DM, CKD (Cr 2.83 mg/dL)
- DOE: NYHA Fc II, Chest pain (-)
- CXR: Bilateral pleural effusion
- EKG: NSR, LAE, ST-T wave abnormality, r/o lateral ischemia
- TTE: EF 31%, ischemic insult of RCA & LAD territory, moderate MR, resting pulmonary HTN (TR Vmax 3.8 m/s, TVPG 61 mmHg)

Q1. Is it OK for op now?
Q2. What is the risk of MACE?
Q3. Further w/u?
Q4. Periop management
Q5. Periop monitoring
Two leading hypotheses for sex differences in mortality

- Systolic function
- Etiology
Definition of Timing of Surgery

- **Emergent**
 - Life or limb is threatened if not in operating room within 6 hours

- **Urgent**
 - Life or limb is threatened if not in operating room within 24 hours

- **Time-Sensitive**
 - Delay of 1-6 weeks for further evaluation would negatively affect outcome

- **Elective**
 - Delay for up to 1 year

2014 ACC/AHA guideline
2011 NSQIP MICA (Myocardial Infarction and Cardiac Arrest) risk evaluation
(Gupta perioperative cardiac risk,
http://www.surgicalriskcalculator.com/miocardiacarrest)

Procedure: 47562 – Laparoscopy, surgical; cholecystectomy
Risk Factors: Age: 65-74, Female, Partially dependent functional status, Diabetes (oral), HTN

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Estimated Risk</th>
<th>Chance of Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious Complication</td>
<td>3%</td>
<td>Above Average</td>
</tr>
<tr>
<td>Any Complication</td>
<td>4%</td>
<td>Above Average</td>
</tr>
<tr>
<td>Pneumonia</td>
<td><1%</td>
<td>Above Average</td>
</tr>
<tr>
<td>Cardiac Complication</td>
<td><1%</td>
<td>Above Average</td>
</tr>
<tr>
<td>Surgical Site Infection</td>
<td>1%</td>
<td>Below Average</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>1%</td>
<td>Above Average</td>
</tr>
<tr>
<td>Venous Thromboembolism</td>
<td><1%</td>
<td>Average</td>
</tr>
<tr>
<td>Renal Failure</td>
<td><1%</td>
<td>Average</td>
</tr>
<tr>
<td>Return to OR</td>
<td>1%</td>
<td>Above Average</td>
</tr>
<tr>
<td>Death</td>
<td><1%</td>
<td>Above Average</td>
</tr>
<tr>
<td>Discharge to Nursing or Rehab Facility</td>
<td>3%</td>
<td>Above Average</td>
</tr>
</tbody>
</table>

Predicted Length of Hospital Stay: 0.5 days

How to Interpret the Graph Above:

Surgeon Adjustment of Risks
This will need to be used infrequently, but surgeons may adjust the estimated risks if they feel the calculated risks are underestimated. This should only be done if the reason for the increased risks was NOT already entered into the risk calculator.

Dept. of Cardiology, Asan Medical Center