What Is Best Care for Patients with End stage heart failure?

Jin Joo Park, MD

Cardiovascular Center, Department of Internal Medicine
Seoul National University Bundang Hospital
<table>
<thead>
<tr>
<th>Class</th>
<th>Patient Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No limitation of physical activity. Ordinary physical activity does not cause undue fatigue, palpitation, dyspnea (shortness of breath).</td>
</tr>
<tr>
<td>II</td>
<td>Slight limitation of physical activity. Comfortable at rest. Ordinary physical activity results in fatigue, palpitation, dyspnea (shortness of breath).</td>
</tr>
<tr>
<td>III</td>
<td>Marked limitation of physical activity. Comfortable at rest. Less than ordinary activity causes fatigue, palpitation, or dyspnea.</td>
</tr>
<tr>
<td>IV</td>
<td>Unable to carry on any physical activity without discomfort. Symptoms of heart failure at rest. If any physical activity is undertaken, discomfort increases.</td>
</tr>
</tbody>
</table>
Heart Failure Stages

At Risk for Heart Failure

STAGE A
At high risk for HF but without structural heart disease or symptoms of HF

- e.g., Patients with:
 - HTN
 - Atherosclerotic disease
 - DM
 - Obesity
 - Metabolic syndrome
 - or
 - Patients
 - Using cardiotonics
 - With family history of cardiomyopathy

THERAPY
- Goals
 - Heart healthy lifestyle
 - Prevent vascular, coronary disease
 - Prevent LV structural abnormalities
- Drugs
 - ACEI or ARB in appropriate patients for vascular disease or DM
 - Statins as appropriate

STAGE B
Structural heart disease but without signs or symptoms of HF

- e.g., Patients with:
 - Previous MI
 - LV remodeling including LVH and low EF
 - Asymptomatic valvular disease

THERAPY
- Goals
 - Control symptoms
 - Improve HRQOL
 - Prevent hospitalization
 - Prevent mortality
- Drugs
 - ACEI or ARB as appropriate
 - Beta blockers as appropriate
- In selected patients
 - ICD
 - Revascularization or valvular surgery as appropriate

STAGE C
Structural heart disease with prior or current symptoms of HF

- e.g., Patients with:
 - Known structural heart disease and
 - HF signs and symptoms

THERAPY
- Goals
 - Control symptoms
 - Patient education
 - Prevent hospitalization
 - Prevent mortality
- Drugs for routine use
 - Diuretics for fluid retention
 - ACEI or ARB
 - Beta blockers
 - Aldosterone antagonists
- Drugs for use in selected patients
 - Digoxin
 - ICD
 - CRT
 - Revascularization or valvular surgery as appropriate

STAGE D
Refractory HF

- e.g., Patients with:
 - Marked HF symptoms at rest
 - Recurrent hospitalizations despite GDMT

THERAPY
- Goals
 - Control symptoms
 - Improve HRQOL
 - Reduce hospital readmissions
 - Establish patient’s end-of-life goals
- Options
 - Advanced care measures
 - Heart transplant
 - Chronic inotropes
 - Temporary or permanent MCS
 - Experimental surgery or drugs
 - Palliative care and hospice
 - ICD deactivation

Heart Failure

- HFrEF
- HFrEF

- Development of symptoms of HF

- Patients with:
 - Known structural heart disease and
 - HF signs and symptoms

- Refractory symptoms of HF at rest, despite GDMT

THERAPY
- Goals
 - Prevent HF symptoms
 - Prevent further cardiac remodeling
 - Prevent mortality
- Drugs
 - ACEI or ARB as appropriate
 - Beta blockers as appropriate
- In selected patients
 - ICD
 - Revascularization or valvular surgery as appropriate

THERAPY
- Goals
 - Control symptoms
 - Patient education
 - Prevent hospitalization
 - Improve HRQOL
 - Prevent mortality
 - Prevent mortality
- Drugs for routine use
 - Diuretics for fluid retention
 - ACEI or ARB
 - Beta blockers
 - Aldosterone antagonists
- Drugs for use in selected patients
 - Digoxin
 - ICD
 - CRT
 - Revascularization or valvular surgery as appropriate

THERAPY
- Goals
 - Control symptoms
 - Patient education
 - Prevent hospitalization
 - Prevent mortality
- Drugs for routine use
 - Diuretics for fluid retention
 - ACEI or ARB
 - Beta blockers
 - Aldosterone antagonists
- Drugs for use in selected patients
 - Digoxin
 - ICD
 - CRT
 - Revascularization or valvular surgery as appropriate

THERAPY
- Goals
 - Control symptoms
 - Patient education
 - Prevent hospitalization
 - Prevent mortality
- Drugs for routine use
 - Diuretics for fluid retention
 - ACEI or ARB
 - Beta blockers
 - Aldosterone antagonists
- Drugs for use in selected patients
 - Digoxin
 - ICD
 - CRT
 - Revascularization or valvular surgery as appropriate

2013 ACCF/AHA Guideline for the Management of Heart Failure
The Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) Profiles

<table>
<thead>
<tr>
<th>Scale</th>
<th>Definition</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Critical cardiogenic shock ("Crash and burn")</td>
<td>Life-threatening hypotension and rapidly escalating inotropic/pressor support, with critical organ hypoperfusion often confirmed by worsening acidosis and lactate levels.</td>
</tr>
<tr>
<td>2</td>
<td>Progressive decline ("Sliding fast" on inotropes)</td>
<td>“Dependent” on inotropic support but nonetheless shows signs of continuing deterioration in nutrition, renal function, fluid retention, or other major status indicator. Can also apply to a patient with refractory volume overload, perhaps with evidence of impaired perfusion, in whom inotropic infusions cannot be maintained due to tachyarrhythmias, clinical ischemia, or other intolerance.</td>
</tr>
<tr>
<td>3</td>
<td>Stable but inotrope dependent</td>
<td>Clinically stable on mild-moderate doses of intravenous inotropes (or has a temporary circulatory support device) after repeated documentation of failure to wean without symptomatic hypotension, worsening symptoms, or progressive organ dysfunction (usually renal).</td>
</tr>
<tr>
<td>4</td>
<td>Resting symptoms on oral therapy at home</td>
<td>Patient who is at home on oral therapy but frequently has symptoms of congestion at rest or with activities of daily living (dressing or bathing). He or she may have orthopnea, shortness of breath during dressing or bathing, gastrointestinal symptoms (abdominal discomfort, nausea, poor appetite), disabling ascites, or severe lower-extremity edema.</td>
</tr>
<tr>
<td>5</td>
<td>Exertion intolerant ("housebound")</td>
<td>Patient who is comfortable at rest but unable to engage in any activity, living predominantly within the house or housebound.</td>
</tr>
<tr>
<td>6</td>
<td>Exertion limited ("walking wounded")</td>
<td>Patient who is comfortable at rest without evidence of fluid overload but who is able to do some mild activity. Activities of daily living are comfortable and minor activities outside the home such as visiting friends or going to a restaurant can be performed, but fatigue results within a few minutes or with any meaningful physical exertion.</td>
</tr>
<tr>
<td>7</td>
<td>Advanced NYHA class III</td>
<td>Patient who is clinically stable with a reasonable level of comfortable activity, despite a history of previous decompensation that is not recent. This patient is usually able to walk more than a block. Any decompensation requiring intravenous diuretics or hospitalization within the previous month should make this person a Patient Profile 6 or lower.</td>
</tr>
</tbody>
</table>
Stage, NYHA, INTERMACS

ACC/AHA Stage

- **STAGE A**: At high risk for HF but without structural heart disease or symptoms of HF
- **STAGE B**: Structural heart disease but without signs or symptoms of HF
- **STAGE C**: Structural heart disease with prior or current symptoms of HF
- **STAGE D**: Refractory HF

NYHA Class

- **I**
- **II**
- **III**
- **IVa**
- **IVb**

INTERMACS Scale

- 7
- 6
- 5
- 4
- 3
- 2
- 1

Goals

- Control symptoms
- Improve HRQOL
- Prevent hospitalization
- Prevent mortality

Strategies

- Identification of comorbidities
- Treatment
 - Diuresis to relieve symptoms of congestion
 - Follow guideline driven indications for comorbidities, e.g., HTN, AF, CAD, DM
 - Revascularization or valvular surgery as appropriate

Drugs for routine use

- Diuretics for fluid retention
- ACEI or ARB
- Beta blockers
- Aldosterone antagonists

Drugs for use in selected patients

- Hydralazine/isosorbide dinitrate
- ACEI and ARB
- Digoxin
- CRT
- ICD
- Revascularization or valvular surgery as appropriate

Options

- Advanced care measures
- Heart transplant
- Chronic inotropes
- Temporary or permanent MCS
- Experimental surgery or drugs
- Palliative care and hospice
- ICD deactivation

Refractory symptoms of HF

- At rest, despite GDMT

Patients with

- Known structural heart disease and HF signs and symptoms
- Previous MI
- LV remodeling including LVH and low EF
- Asymptomatic valvular disease
- HTN
- Atherosclerotic disease
- DM
- Obesity
- Metabolic syndrome
- Using cardiotoxins
- With family history of cardiomyopathy

Development of symptoms of HF

- Structural heart disease
Definition of Advanced HF

A subset of patients with chronic HF will continue to progress and develop *persistently severe symptoms* despite maximum GDMT.
Criteria for Advanced HF

- Repeated (≥2) hospitalizations or ED visits for HF in the past year
- Progressive deterioration in renal function (e.g., rise in BUN and creatinine)
- Weight loss without other cause (e.g., cardiac cachexia)
- Intolerance to ACE inhibitors due to hypotension and/or worsening renal function
- Intolerance to beta blockers due to worsening HF or hypotension
- Frequent systolic blood pressure <90 mm Hg
- Persistent dyspnea with dressing or bathing requiring rest
- Inability to walk 1 block on the level ground due to dyspnea or fatigue
- Recent need to escalate diuretics to maintain volume status, often reaching daily furosemide equivalent dose >160 mg/d and/or use of supplemental metolazone therapy
- Progressive decline in serum sodium, usually to <133 mEq/L
- Frequent ICD shocks
Before Confirming End Stage HF

Is the diagnosis is correct?

- Are there any remediable etiologies or alternative explanations for advanced symptoms.
 - Dyspnea due to pulmonary disease
 - Presumed cardiac cachexia due to cancer
- Reversible factors such as thyroid disorders
- Non-compliance to medications, sodium restriction
Mechanical Circulatory Support (MCS)

• **MCS use is beneficial in carefully selected patients with stage D HFrEF in whom definitive management (e.g., cardiac transplantation) or cardiac recovery is anticipated or planned. [II a, LOE B]**

• **Nondurable MCS, including the use of percutaneous and extracorporeal ventricular assist devices (VADs), is reasonable as a “bridge to recovery” or a “bridge to decision” for carefully selected patients with HFrEF with acute, profound hemodynamic compromise [II a, LOE B].**

• **Durable MCS is reasonable to prolong survival for carefully selected patients with stage D HFrEF [II a, LOE B].**
Different Goals of MCS

- **Bridge to transplant (BTT)**
 - allow rehab from severe CHF while awaiting donor

- **Destination therapy (DT)**
 - permanent device, instead of transplant
 - currently only in transplant-ineligible patients

- **Bridge to recovery (BTR)**
 - unload heart, allow “reverse remodeling”

- **Bridge to candidacy (BTC)/Bridge to decision (BTD)**
 - when eligibility unclear at implant
 - not true “indication” but true for many pts
Pulsatile flow VAD

Novacor

HeartMate I XVE
Size reduction

Pulsatile-flow vs continuous-flow VAD
HeartMate II
Jarvik 2000 Flowmaker

Jarvik 2000 flow maker:
- 90 gr
- 25cc
The HVAD (HeartWare Corp.)
Berlin Heart Incor
Issues with cardio-circulatory assist devices

- The energy source, consisting of very large and heavy compressors
- Bulky and short life batteries
- The thrombogenicity of the contact surface with circulating blood
- The size of the device, too big to consider for long-term intra-thoracic implantation
- The need for extensive connectivity measures with the exterior in order to connect the device to the energy source and to the controller
- The high rate of bleeding complications and infectious diseases
Who has an LVAD?
10,542 patients received VAD until 2013
VAD as Destination Therapy

![Graph showing implants for Destination Therapy from June 2006 to December 2013, n = 3516. The graph compares continuous flow intracorporeal pumps and pulsatile flow intracorporeal pumps. The number of implants per year is shown for each type of pump, with continuous flow pumps increasing significantly from 2009 onwards.]
Continuous-flow LVAD

1YS: 80%, 2YR: 70% without change in the recent era

Kirklin et al. ISHLT 2014
Device strategy at the time of implant

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>BTT listed</td>
<td>185</td>
<td>42.4%</td>
<td>1,335</td>
<td>39.2%</td>
</tr>
<tr>
<td>BTT likely</td>
<td>85</td>
<td>19.5%</td>
<td>884</td>
<td>26.0%</td>
</tr>
<tr>
<td>BTT moderate</td>
<td>49</td>
<td>11.2%</td>
<td>337</td>
<td>9.9%</td>
</tr>
<tr>
<td>BTT unlikely</td>
<td>28</td>
<td>6.4%</td>
<td>104</td>
<td>3.1%</td>
</tr>
<tr>
<td>DT</td>
<td>64</td>
<td>14.7%</td>
<td>666</td>
<td>19.6%</td>
</tr>
<tr>
<td>BTR</td>
<td>17</td>
<td>3.9%</td>
<td>38</td>
<td>1.1%</td>
</tr>
<tr>
<td>Rescue therapy</td>
<td>8</td>
<td>1.8%</td>
<td>24</td>
<td>1.0%</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0.0%</td>
<td>14</td>
<td>0.4%</td>
</tr>
<tr>
<td>Total</td>
<td>436</td>
<td>100.0%</td>
<td>3,402</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Kirklin et al. ISHLT 2014
Outcomes according to INTERMACS scales

Patient: Hospitalized HF patients, n= 166, NYHA III-IV, EF≤30%

Outcomes: Death, MCS, HT

Competing events

- Alive on Medical Therapy
- Death without VAD/Tx
- Transplant
- VAD

Survival according to INTERMACS

- INTERMACS 6/7
- INTERMACS 5
- INTERMACS 4

Survival rates at 12 months:
- INTERMACS 6/7: 84%
- INTERMACS 5: 74%
- INTERMACS 4: 60%

p=0.039
• Evaluation for cardiac transplantation is indicated for carefully selected patients with stage D HF despite GDMT, device, and surgical management
[I, LOE C]
Adult Heart Transplants Kaplan-Meier Survival by Era
(Transplants: January 1982 – June 2012)

All pair-wise comparisons were significant at $p < 0.0001$ except 2002-2005 vs. 2006-6/2012 ($p = 0.9863$).

HT survival in Korea

Jung SH et al. JKMS 2011

Overall survival rate

1 YSR: 95.5 ± 1.5%
5 YSR: 86.9 ± 2.6%
10 YSR: 73.5 ± 4.1%
12 YSR: 61.6 ± 5.8%

Patients at risk

201 167 123 92 75 52 28 13

Years after transplant
Survival Comparisons

<table>
<thead>
<tr>
<th></th>
<th>INTERMACS</th>
<th></th>
<th>MCS</th>
<th></th>
<th>HT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7/6</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>84%</td>
<td>74%</td>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 year</td>
<td></td>
<td></td>
<td>69%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80%</td>
<td>90-95%</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Ⅰ Ventricular assisting device

Ⅱ Heart transplantation

Ⅲ Palliative care

Ⅳ Summary
Transition to end-of-life care

• A patient with advanced HF who
 ▪ Is failing oral therapies
 ▪ Is not a transplantation candidate
 ▪ Is not a mechanical circulatory support candidate

• Decision making for
 ▪ emergency situations (SCD)
 ▪ clinical situations that can be reasonably anticipated
Palliative care

- ‘palliare’, latin means ‘to cloak’
- treatment for the relief of pain and other uncomfortable symptoms through the appropriate coordination of all aspects of care needed to maximize personal comfort and relieve distress
Palliative care in stage D

• Advanced HF patients are more likely to die of pump failure than SCD; thus they have greater symptoms.

• The amount of suffering that occurs in advanced HF is underestimated by many health care providers and remains inadequately treated.
Water restriction

- Water Restriction (II a, LOE C)
 - Fluid restriction (1.5 to 2 L/d) is reasonable in stage D, especially in patients with hyponatremia, to reduce congestive symptoms.
Inotropic support (I)

- Until definitive therapy (e.g., coronary revascularization, MCS, heart transplantation) or resolution of the acute precipitating problem, patients with cardiogenic shock should receive temporary intravenous inotropic support to maintain systemic perfusion and preserve end-organ performance. [II b, LOE B]

- **Long-term**, continuous intravenous inotropic support may be considered as palliative therapy for symptom control in select patients with stage D despite optimal GDMT and device therapy who are not eligible for either MCS or cardiac transplantation. (II b, LOE B)
Inotropic support (II)

- **Long-term** use of either continuous or intermittent, intravenous parenteral positive inotropic agents, in the absence of specific indications or for reasons other than palliative care, is potentially harmful in the patient with HF (III, LOE B)
M/84

ADHF
1st adm 2015.12 57.4kg → 57.5kg (신장내과 -> 호흡기내과)
2nd adm 2016.01 66.4 → 65.4kg (d/t influenza 호흡기내과)
3rd adm 2016.12 64.7 >→ 61kg (순환기내과, ICD insertion)
4th adm 2017.01 59kg → 56kg (d/t pneumonia)
5th adm 2017.03

HFrEF
2015-12 CAG: insignificant
2015-12 Echo: EDD 61, **EF 38%**, RCA (+); sev fMR, mod ecc AR
2016-12 CAG: insignificant
2016-12 Echo: EDD 64mm, **EF 32%;** sev fMR, mod ecc AR, new RV akinesia
2016-12 ICD implantation, sev fMR, E/e' = 29.51
2017-01 Echo: EDD 60mm, **EF 38%**

AF on NOAC
DM, HT
Bronchial Asthma; r/o BOOP
 - s/p Steroid (mPd 30mg qd 16/1/8-1/12, Pd 30mg qd 16/1/13. 16/4)
Refractory dyspnea

- low-dose **opiates** are the mainstay of therapy
- **benzodiazepines** as second-line or third-line agents (only drowsiness, adverse effects)
- **oxygen** is only beneficial in reducing dyspnea in hypoxic patients, but not for those without hypoxia

Cochrane Database Syst Rev. 2010 CD007354.
Depression

- 20% patients with HF meets criteria for major depressive disorder
- **SSRI** still considered first-line therapy for depression in patients with advanced HF.
 - extrapolation from studies in other settings
 - a lack of other proven options
- **TCA** has limited role in HF
 - QTc prolongation
 - anticholinergic effects (dry mouth), orthostatic hypotension
Sertraline for Depression (SADHART-CHF) Trial

Patient: HF ≤45%, NYHA II-IV, clinical depression

Intervention: Sertraline 50-200mg/d for 12 weeks (n=234)

Comparison: Placebo (N=235)

Outcomes: change in depression severity & CV status at 12 weeks

Hamilton Depression Rating Scale [HDRS]
Pain

- 2/3 of all patients with HF reported some form of pain
 - NYHA III: 69%; NYHA IV: 89%
- The Pain Assessment, Incidence & Nature in Heart Failure (PAIN-HF) study has identified medical comorbidities most highly associated with pain in patients with advanced HF, including degenerative joint disease, chronic back pain, anxiety, and depression.
- Opiates usage: 22% in advanced HF vs. 50% in cancer
- NSAIDS may cause Na\(^+\)/fluid retention and exacerbate HF.
Take Home massage

• **Stage D heart failure**
 - Triage of candidates (MCS, HT or palliation)
 - Palliative care includes amelioration of dyspnea, depression, pain
 - Advanced directives both emergent and anticipated situations should be discussed.

• **Communication** to address sources of discomfort and to ensure adequate patient understanding of their disease process and prognosis is integral to the care of these patients.

• **Improved use of palliative measures** may improve patient comfort and satisfaction with the death and dying process.
Thank You For Your Attention!

Seoul National University Bundang Hospital