Nuclear Imaging Approach to Plaque Characterization

Joon Young Choi, M.D., Ph.D.
Dep. Of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

2017 Annual Spring Scientific Conference of the KSC in conjunction with KHRS, KSIC, KSE, and KSoLA
The authors have no financial conflicts of interest to disclose concerning the presentation.
Contents

• Overview of plaque nuclear imaging
• 18F-FDG PET/CT in plaque characterization
• 18F-sodium fluoride PET/CT in plaque characterization
• 18F-GP1 PET/CT in plaque characterization
• Other tracers
Cardiovascular Atherosclerotic Disease

• Leading cause of death in western countries

• Korea: cause of death in 35%

• Preventing acute coronary events and their sequelae

• Identifying patients at increased risk → intensive care

• Various kinds of risk stratification systems: low hazard rate
Vulnerable Plaque Concept

Different Types of Vulnerable Plaque

- Future Culprit Plaque, high-risk plaque, unstable plaque
- All thrombosis-prone plaques and plaques with a high probability of undergoing rapid progression, thus becoming culprit plaques

Vulnerable Plaque - Major Criteria

- Active Inflammation
- A thin cap with a large lipid core
- Endothelial denudation with superficial platelet aggregation
- Fissured/injured plaque
- Severe stenosis
Vulnerable Plaque - Minor Criteria

- Superficial calcified nodules
- Yellow color
- Intraplaque hemorrhage
- Endothelial dysfunction
- Expansive (positive) remodeling
Molecular Targets for Nuclear Imaging

Superficial platelet aggregation

Nuclear Imaging

<table>
<thead>
<tr>
<th>Process</th>
<th>Target</th>
<th>Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammation</td>
<td>Macrophages</td>
<td>99mTc-MCP-1 [1]</td>
</tr>
<tr>
<td></td>
<td>Chemokine (C-C motif) receptor 2 (Ccr2)</td>
<td>11C-choline [2]</td>
</tr>
<tr>
<td></td>
<td>Choline metabolic activity</td>
<td>18F-fluorocholine [3]</td>
</tr>
<tr>
<td></td>
<td>Translocator protein (TSPO)</td>
<td>123I-DPA-713 [4]</td>
</tr>
<tr>
<td></td>
<td>Somatostatin receptor subtype 2</td>
<td>11C-PK11195 [5]</td>
</tr>
<tr>
<td></td>
<td>Phosphatidyl serine receptor</td>
<td>64Cu-DOTATATE [6, 7]</td>
</tr>
<tr>
<td></td>
<td>Foam cell, M1 macrophage</td>
<td>111In-PS200 [9]</td>
</tr>
<tr>
<td></td>
<td>Glucose metabolic activity</td>
<td>18F-FDG [10]</td>
</tr>
<tr>
<td></td>
<td>M2 macrophage</td>
<td>18F-FDM [11]</td>
</tr>
<tr>
<td></td>
<td>Mannose receptor</td>
<td>99mTc-/123I-IL-2 [12]</td>
</tr>
<tr>
<td></td>
<td>Lymphocyte</td>
<td></td>
</tr>
<tr>
<td>Lipid core and fibrous cap formation</td>
<td>Lipoprotein(OxLDL)</td>
<td>123I-AHP [13]</td>
</tr>
<tr>
<td></td>
<td>LOX-1 (scavenger receptor)</td>
<td>99mTc-LOX-1-mAb [14]</td>
</tr>
<tr>
<td></td>
<td>Fatty acid synthesis</td>
<td>11C-Acetate [15]</td>
</tr>
<tr>
<td>Apoptosis</td>
<td>Phosphatidyl serine</td>
<td>99mTc-annexin A5 [16]</td>
</tr>
<tr>
<td></td>
<td>Caspase-3</td>
<td>18F-isatin derivatives [17]</td>
</tr>
<tr>
<td></td>
<td>Membrane alteration</td>
<td>18F-ML-10 [18]</td>
</tr>
<tr>
<td>Angiogenesis</td>
<td>VEGF receptor</td>
<td>89Zr-VEGF-mAb [19]</td>
</tr>
<tr>
<td></td>
<td>Integrin-α, β_3</td>
<td>18F-galacto-RGD [20]</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>Hypoxia</td>
<td>18F-FMISO [22]</td>
</tr>
<tr>
<td>Proteolysis</td>
<td>MMPs</td>
<td>99mTc-/111In-/123I-/18F-MMP inhibitors [23]</td>
</tr>
<tr>
<td></td>
<td>99mTc-MT1-MMP-mAb [24]</td>
<td></td>
</tr>
<tr>
<td>Thrombosis</td>
<td>Platelets</td>
<td>111In-platelets [25]</td>
</tr>
<tr>
<td></td>
<td>Tissue factor (TF)</td>
<td>99mTc-TF-mAb [26]</td>
</tr>
<tr>
<td>Calcification</td>
<td>Mineral deposition/active calcification</td>
<td>18F-NaF [27, 28]</td>
</tr>
</tbody>
</table>

¹⁸F-FDG PET/CT

- Glucose analogue
- High uptake in active inflammatory cells such as macrophage
- Whole body hybrid imaging
- Quantification
- Clinically available
CT coronal

PET/CT coronal

PET/CT axial

Histopathology axial

Calcified plaque

High FDG uptake

Low FDG uptake

FDG uptake (TBR)

Macrophage Density

$R = 0.70, P < .001$

Clinical Results

• Aortic FDG uptake: predictor for future CVD events, incremental predictive value above the coronary artery calcium and Framingham Risk Score

• Carotid FDG uptake: predictor for recurrent ipsilateral cerebrovascular events

• FDG PET in drug clinical trial

Experienced subsequent CVD event

Carotid imaging

Did not experience subsequent CVD event

Aortic imaging

FDG PET/CT in Drug Trial

Samsung Medical Center
Limitations

• Lack of large prospective clinical trials
• Various kinds of quantitation methods
• Significant overlap in values
• Low spatial resolution of PET: coronary plaque
• Myocardial physiological uptake
• Motion artifact: respiration, cardiac motion
18F-Sodium Fluoride PET/CT

- To identify areas of calcification, active calcification and micro-calcification of vulnerable plaque
- Low myocardial background uptake, clinically available
- Clinical results
 - High uptake in culprit coronary plaques
 - High uptake associated with high-risk features on IVUS
 - High correlation with clinical CV risk, coronary artery calcium score
- Limitations: lack of good clinical outcome studies

18F-Sodium Fluoride PET/CT
18F-Sodium Fluoride PET/CT

Figure 3

10-Year Framingham Risk Scores for Control Subjects and Patients With Atherosclerosis Who Did and Did Not Have Increased 18F-NaF Uptake

Error bars denote the SD of the mean. 18F-NaF = 18F-sodium fluoride; CHD = coronary heart disease; CVD = cardiovascular disease.

FDG vs. NaF PET/CT

<table>
<thead>
<tr>
<th>18F-Fluoride uptake (n = 27)</th>
<th>18F-FDG uptake (n = 34)</th>
<th>Arterial calcification (n = 34)</th>
<th>Total no. of patients (n = 45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET-positive</td>
<td>PET-positive</td>
<td>CT-positive</td>
<td>25</td>
</tr>
<tr>
<td>PET-positive</td>
<td>PET-positive</td>
<td>CT-negative</td>
<td>1</td>
</tr>
<tr>
<td>PET-positive</td>
<td>PET-negative</td>
<td>CT-positive</td>
<td>1</td>
</tr>
<tr>
<td>PET-negative</td>
<td>PET-positive</td>
<td>CT-negative</td>
<td>7</td>
</tr>
<tr>
<td>PET-negative</td>
<td>PET-positive</td>
<td>CT-negative</td>
<td>1</td>
</tr>
<tr>
<td>PET-negative</td>
<td>PET-negative</td>
<td>CT-positive</td>
<td>1</td>
</tr>
<tr>
<td>PET-negative</td>
<td>PET-negative</td>
<td>CT-negative</td>
<td>9</td>
</tr>
</tbody>
</table>

Graph 1: Comparison of TBRmax between 18F-FDG and 18F-NaF. The graph shows a significant increase in TBRmax for 18F-NaF compared to 18F-FDG. * indicates statistical significance.

Graph 2: Comparison of Hounsfield units (HU) for calcium density at baseline and follow-up. The graph shows a significant increase in Hounsfield units for both 18F-FDG and 18F-NaF at follow-up. * indicates statistical significance.

FDG vs. NaF PET/CT

A 18F-sodium fluoride

B 18F-fluorodeoxyglucose

Novel PET Imaging

- 68Ga-DOTATATE: somatostatin receptor on inflammatory cells, associated with coronary calcium score, CV risk
- 11C-PK11195 (targeting translocator protein receptors), 18F-fluoromethylcholine (FMCH), 18F-fluorodeoxymannose (FDM): activated macrophage, preclinical results on stroke, carotid, aorta
- 68Ga-NOTA-RGD and 18F-Galacto-RGD: neoangiogenesis
- 18F-fluoromisonidazole (18F-FMISO): hypoxia
- 18F-GP1: activated platelet

18F-GP1 PET/CT

- High affinity for glycoprotein IIb/IIIa (GPIIb/IIIa) receptor of activated platelet
- Vulnerable plaque in atherosclerosis: endothelial denudation with superficial platelet aggregation
- Originally developed for venous thrombosis imaging
- Promising imaging modality for vulnerable plaque imaging
- Available in Korea
 - Cooperation between Bayer and AMC
 - Ongoing phase I clinical trial
 - Planned phase II-III clinical trial

Pre-clinical Study

Microtiter plates coated with human GPIIa/IIIb

Autoradiography of human left ventricular thrombus

Pre-clinical Study

In vitro blood flow model

PET imaging of 18F-GP1 thrombus binding in the in vitro blood flow model

Pre-clinical Study

18F-GP1 PET of arterial thrombi in cynomolgus monkeys.

Pre-clinical Study

18F-GP1 PET of both arterial and venous thrombi in cynomolgus monkeys.

Clinical Study

• Interim analysis of an open-label, single center phase I study

• Patients with deep vein thrombosis (DVT, n=4), pulmonary embolism (PE, n=5) or arterial thromboembolism (ATE, n=6: one cerebral infarction, and 5 subjects after endovascular abdominal aortic aneurysm repair) who had acute thromboembolic focus/foci confirmed by standard imaging modalities

• 18F-GP1 dynamic PET/CT, no drug-related adverse events
Clinical Study

• Results by visual assessment
 - Patient-based sensitivity: 100% (15/15)
 - Lesion-based sensitivity: 100% in DVT (18/18), 75% in PE (18/24), 86% in ATE (6/7)

• Quantitative results
 - SUV ratio (SUVR): lesion vs. reference tissue
 - DVT: 5.89 ± 2.71 (SUV_{max}), 4.97 ± 1.85 (SUVR)
 - PE: 4.99±2.35 (SUV_{max}), 4.24±2.01 (SUVR)
 - ATE: 5.07±1.95 (SUV_{max}), 5.34±2.17 (SUVR)
 - Clinically unexpected additional thromboembolic lesions: 47% (7/15)

Summary

• Carotid and aortic FDG uptake is associated with future cardiovascular and cerebrovascular events. However, further large prospective clinical trial is necessary.
• Coronary NaF uptake is associated with vulnerable coronary plaque. However, further clinical outcome study is necessary.
• FDG and NaF uptakes reflect different pathology of atherosclerotic plaque.
• 18F-GP1 PET/CT may be a promising imaging modality for DVT, PE or ATE with a high sensitivity, which deserves further study for plaque characterization.
Thank you for your attention!