2017 춘계심혈관통합학술대회

LEFT VENTRICULAR SUMMIT VT

Kyoung-Min Park, MD PhD

Division of Cardiology, Department of Medicine Heart Vascular Stroke Institute Samsung Medical Center, Sungkyunkwan University School of Medicine

@Wallace A. McAlpine Collection-UCLA Cardiac Arrhythmia Center (with permission)

Epicardial LVOT Patterns

- Timing Slow conduction in initial portio n of QRS (precordial leads)
- Maximum deflection index (MDI) = QRS onset to maximum precordial deflection/QRS duration > .55

<u>Morphologic clues – less sensitive</u> <u>but **specific**</u>

- QS in lead 1(anterolat GCV)
- QS in 2,3,avF (Inferior MCV) (Bazan et al Heart Rhythm 2007; 4(11):1403)
- Loss of R from V 1 to V2 (QS or rS) with prominent R by V3
 - In front of the aortic root AIV
 - Reverse for Inferior (big V2 R) MCV

MDI - Adapted from Daniels et al Circ ulation 2006; 113: 1659-1666

ANTERIOR - Q in V2, 1

INFERIOR - Q in 2,3,avF

Bazan et al Heart Rhythm 2006

LV summit: definition

- Highest site of the LV (summit)
- Triangular portion of the epicardial LVOT
- Bounded by the bifurcation of the LM (LAD and LCx)
- ✓ Transected laterally by the AIV/GCV junction
- Endocardial LV below LCC represents the opposite aspect of the LV summit

Santangei et al. Circulation EP 2015;8:337-43 Yamada et al. Circulation EP 2010;3:613-23

GREAT CARDIAC VEIN

- Anatomical Variations

ECG Features of Successful Epicardial Ablation

Suggest origin away from LM bifurcation Based of LV summit triangle

	Successful EPI (n=5)	Unsuccessful EPI (n=18)
R/S wave ratio > 2	4 (80%)	5 (28%)
Q aVL/ Q aVR > 1.85	4 (80%)	2 (11%)
Initial "q" in V1	0 (0%)	6 (33%)

Santangeli et al. Circulation EP 2015;8:337-43

UNSUCCESSFUL

SUCCESSFUL

Santangeli et al. Circulation EP 2015;8:337-43

ABLATION FROM ADJACENT SITES

- : Clues for successful ablation better PM match with High output pacing (Index of anatomical proximity)
 - LA appendage
 - Adjacent RVOT (value of ICE)
 Frankel et al Circulation EP 2014;7:984-5
 - Ablation from LCC or adjacent endocardium of VT source near the AIV

- Abularach et al Heart Rhyhtm 2012;9:865-873

How to map and ablate left ventricular summit arrhythmias

Andres Enriquez, MD,^{*} Federico Malavassi, MD,[†] Luis C. Saenz, MD,[†] Gregory Supple, MD,^{*} Pasquale Santangeli, MD,^{*} Francis E. Marchlinski, MD,^{*} Fermin C. Garcia, MD^{*}

From the ^{*}Section of Cardiac Electrophysiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, and [†]Centro Internacional de Arritmias Andrea Natale, Fundacion Cardioinfantil, Bogota, Colombia.

 If the distance from the coronary arteries is not judged to be safe, ablation within the GCV/AIV is not technically feasible, or the earliest activation is recorded at a septal venous perforator, a first ablation attempt is performed from the LCC or LV endocardium, whichever is earliest and/or opposite to the earliest epicardial site marked by the catheters in the venous system.

ABLATION FROM LCC OR ADJACENT ENDOCARDIUM OF VT SOURCE NEAR THE AIV (EARLIEST SITE/BEST PM)

RATIONALE: AVOID CORONARIES/ EPI DIFFICULT

Anatomic Distance <13.5mm

Α Unsuccessful ^B Successful 0.30 mV Q w ratio 0.97 mV Q w ratio aVL/aVR = 3.46 aVL/aVR = 0.601.04 mV 0.59 mV n V2 V3 V4 V5

Q wave ratio aVL/aVR - <1.45

- Abularach et al Heart Rhyhtm 2012;9:865-873

BRIEF HISTORY

- 40 year-old male
- Dec 2014 Follow up every 3 month for symptomatic VPC (palpitation) in local hospital
- Mar 2016 Referred to SMC complaining of dyspnea & palpitation; VPC bigeminy and normal echoCG
- Jun 2016 VPC 34% in 24hr holter (36686 isolated, 42 couplets, 11 triplets, 15397 bigeminies), moderate LV systolic dysfunction (LVEF 35%)

- Jul 2016 1st RFCA was done
- Sep 2016 Slightly improved symptom, but still large burden of VPC (26%, 28138 isolated, 1 couplet, 5 triplets, 15754 bigeminies) in 24hr holter
- Oct 2016 Admission for 2nd RFCA; improved LV systolic function (LVEF 47.2%) in follow-up echoCG

PRE-1ST RFCA ECG

1st RFCA

2016-07-11

PRE-RFCA 12 LEADS

ACTIVATION MAP BY CARTOUNIVU (RVOT)

EARLIEST ACTIVATION SITE IN RVOT

RAO

AORTOGRAM

ACTIVATION MAP BY CARTOUNIVU (LVOT)

DISCRETE POTENTIAL LCC

POST-ABLATION #8 LCC

DISCRETE POTENTIAL BELOW LCC

ABLATION IN EARLIEST ACTIVATION SITE

ABLATION SITES IN CARTOUNIV IMAGES

RVOT anterior septum

RVOT anterior septum and opposing LVOT septum

1 MONTH AFTER RFCA

2ND RFCA

Recurred VPCs

Q. WHICH LOCATION WOULD YOU PREFER TO MAP FIRST IN THIS PATIENT?

RVOT
LVOT
Epicardial side

Before redo RFCA

Epicardial VT Origin: Specific Contours

Outflow Tract VT With Pattern Break in Lead V2. *Introduction:* In outflow tract ventricular arrhythmias (OT-VAs), an abrupt loss of the R wave in lead V2 compared to V1 and V3 (pattern break in V2–PBV2) suggests an origin close to the anterior interventricular sulcus (anatomically opposite to lead V2) and adjacent to proximal coronaries. We studied the outcome of catheter ablation of OT-VAs with a PBV2.

Methods and Results: Of 130 consecutive patients with idiopathic left bundle block morphology OT-VAs and transition \leq V4, 12 (9%) had PBV2. Outcomes in this group were compared to the remaining 118 patients. Patients with PBV2 were more likely to be younger (41 ± 18 vs. 50 ± 14 years, P = 0.0384) and women (11 [92%] vs. 70 [59%], P = 0.0302). The earliest activation was at the RVOT in seven, left coronary cusp (LCC) in one, anterior interventricular vein (AIV) in two and the epicardium in two. In five (42%) cases (earliest activation in the AIV in two, epicardium in two, and RVOT below the valve level in one), ablation was aborted due to proximity to the left anterior descending (LAD) coronary artery. After 36 ± 17 months and 1.3 ± 0.5 procedures, VAs elimination was achieved in 58% of patients with PBV2 compared to 89% of the reference population (P = 0.0125) with effective site in five of seven at the most anterior and leftward RVOT adjacent to the pulmonic valve (PV).

Conclusions: OT-VAs with PBV2 demonstrate a unique ECG pattern and challenging catheter ablation. Proximity to LAD precludes ablation in about half. Long-term VA suppression could be achieved in only 58% of cases most commonly when the earliest site is at the anterior and leftward RVOT just under the PV. (J Cardiovasc Electrophysiol, Vol. pp. 1-11) PRE-2NDRFCA 12 LEAD

ANATOMICAL MAPPING USING THE SOUNDSTAR[™] CATHETER

ACTIVATION MAP BY CARTOSOUND (RV)

EARLIEST ACTIVATION SITE IN RVOT

ABLATION IN RVOT (ANTERIOR SEPTUM)

POST-RFCA #14 IN RVOT

ACTIVATION MAP BY CARTOSOUND (LV)

EARLIEST ACTIVATION SITE IN LVOT

SUCCESSFUL ABLATION IN LVOT (BELOW LCC)

MAT

ABLATION WITH SMARTTOUCH CATHETER

Maximal power 40W, duration 160s

LESION FORMATION VISUALIZED BY ICE

COMPARISON OF THE TWO PROCEDURES

Location by fluoroscopy

•

1st procedure

• Redo prodedure

Location by 3D mapping

• 1st procedure

Redo procedure

Mapping and ablation

	1st	Redo
System	CartoUnivu	CartoSound
Catheter	J&J Thermocool	SmartTouch

RF energy

	1st	Redo
Max power	30W	40W
Duration	60s	160s
Number	RVOT #6 LVOT #11	RVOT #14 LVOT #4

Deep lesion could be made with higher power, longer duration, and stable contact by assistance of ICE and SmartTouch catheter.

Earliest activation by EGM

	1st	Redo
RVOT	-24 msec	-24 msec
LVOT	Discrete potential	-24 msec

ECG Features of Successful Epicardial Ablation

Suggest origin away from LM bifurcation Based of LV summit triangle

Inaccessible area Septal to GCV/AIV	GCV LCx		Successful EPI (n=5)	Unsuccessful EPI (n=18)	Case
LM LM		R/S wave ratio > 2	4 (80%)	5 (28%)	0.42
S	AIV	Q aVL/ Q aVR > 1.85	4 (80%)	2 (11%)	1.43
	AD	Initial "q" in V1	0 (0%)	6 (33%)	no

Santangeli et al. Circulation EP 2015;8:337-43

LV Summit VT

- Anatomical definitions
- ECG clues to recognize epicardial origin
- Common sites of origin/link to venous system
- How to ablate (direct vs. adjacent sites)

THANK YOU!