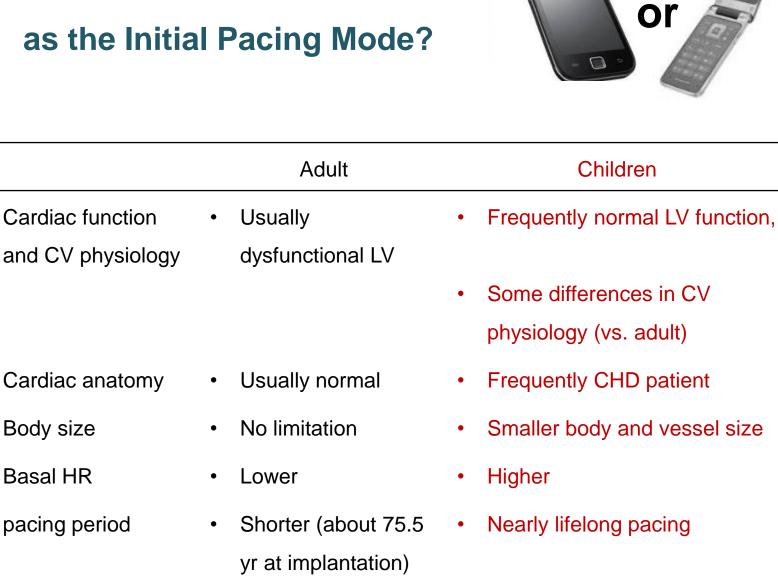

Single Chamber Ppm vs Dual Chamber Ppm in Children

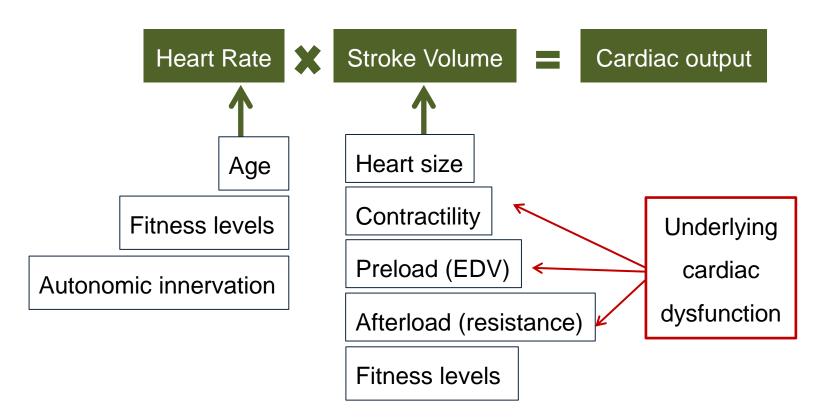
부산대학교병원 조민정 Single-chamber atrial pacemaker

Single-chamber ventricular pacemaker Single-lead, atrial-sensing ventricular pacemaker


Dual-chamber pacemaker

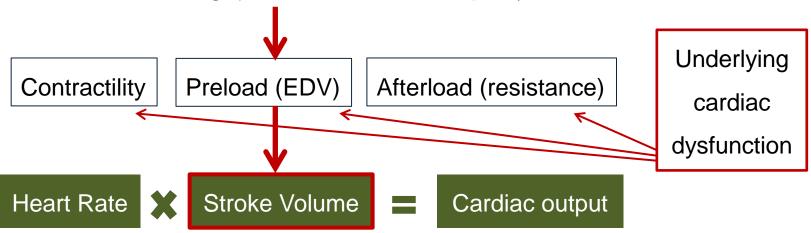
DDD pacing might be superior to VVI pacing in adults

Outcome of RCTs of Dual-chamber vs. Ventricular pacing


	Dual- chamber	Single- chamber VVI	Notes
All-cause deaths	No difference		
Stroke, embolism	Benefit		Benefit higher in SSS
Atrial fibrillation	Benefit		Benefit higher in SSS
HF hospitalization	No difference		
Exercise capacity	Benefit		Not significant compared to VVIR
Pacemaker syndrome	Benefit		
Functional status	No difference		
Quality of life	Variable		
Complications		Benefit	

2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy, Europace (2013) 15, 1070–1118

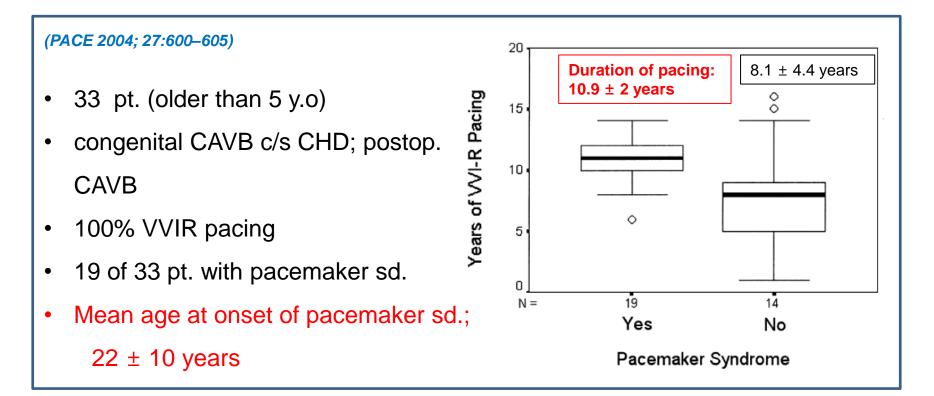
Do Children Need Dual Chamber


CV physiology

- Atrial function contribute 10% to 30% to left ventricular stroke volume in adults with dual-chamber PMs
- AV sequential pacing is especially important in compromised myocardial function

AV Dyssynchrony in Adult

- Atrial contraction against closed AV valves
- Ventricular filling ↓, Atrial & Venous pr. ↑

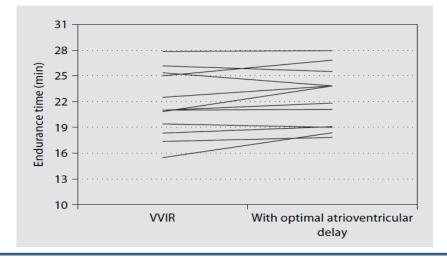

Pacemaker syndrome –

dyspnea, headache, fatigue, syncope, exercise intolerance

Development of Afib

Pacemaker Syndrome in Children with Normal LV Fx: VVIR Predisposes to Develop?

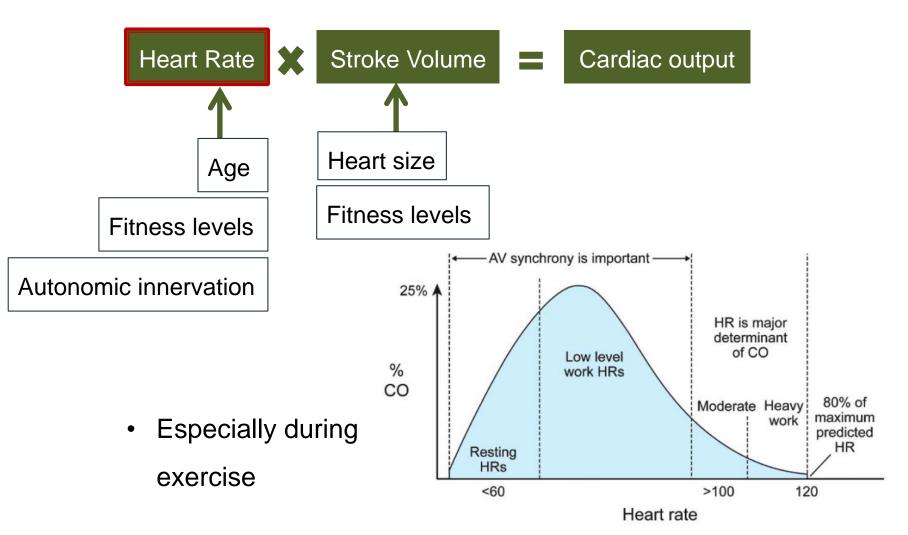
- Pacemaker syndrome : 15% to 75% in older adult patients
- Pacemaker syndrome do not typically appear during the first decade after institution of pacing in the young.


Exercise Capacity in Children with normal LV Fx: Does Pacing Mode Make a huge Difference?

- 12 children with VDD/DDD pacemaker
- VDD/DDD during 100, 125, 150, 200 ms AV delays and VVIR pacing
- Cardiac index: VDD/DDD > VVIR

Pacing mode	Cardiac index (l/min/m ²)	р
VVIR	$5.25 \pm 2.39 (2.77 \pm 12.27)$	< 0.05*
With 100 ms atrioventricular delay	$6.70 \pm 3.06 (3.73 \pm 15.01)$	NS
With 125 ms atrioventricular delay	$6.49 \pm 2.51 \ (4.02 \pm 12.84)$	NS
With 150 ms atrioventricular delay	$6.15 \pm 2.35 (3.86 \pm 12.50)$	NS
With 200 ms atrioventricular delay	$6.37 \pm 2.69 (3.69 \pm 12.88)$	NS

• Exercise endurance time:


no difference

Cardiology 2007;107:185-189

Maintenance of cardiac output in children with normal LV function

Heart rate response is the most important contribution

Dual Chamber Ppm vs Single Chamber Ppm in Children

- DDD may be deferred until an older age in pediatric patients with normal LV Fx as clinical symptoms of PS arise.
- Regarding exercise capacity and tolerability, VVIR pacing is an acceptable alternative to the DDD

	Dual-chamber V		
Pacemaker syndrome	No difference in normal LV function		
Exercise capacity	No difference in normal LV function		

Body Size issue

VVI

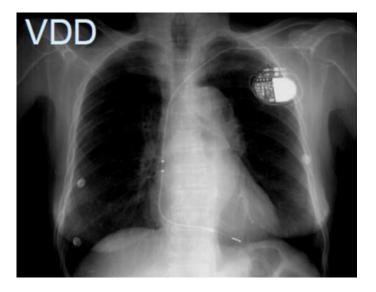
Smaller generator

One lead required

 Epicardial - simple limited lower sternotomy

Larger generator

Two lead required

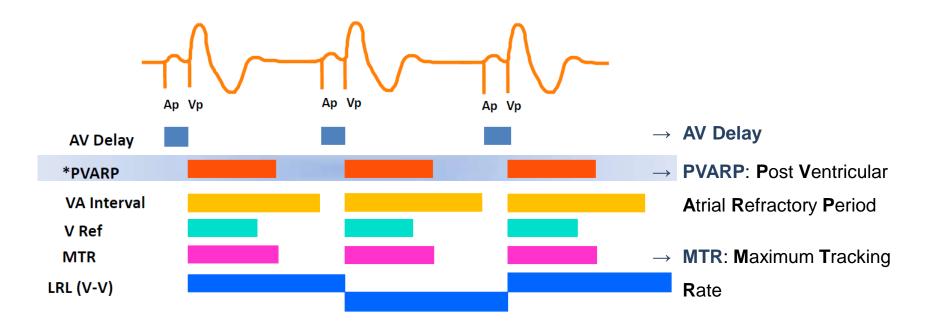

- Epicardial- median sternotomy or a left lateral thoracotomy
- Endocardial- the veins may be too small to accommodate two leads easily

DDD

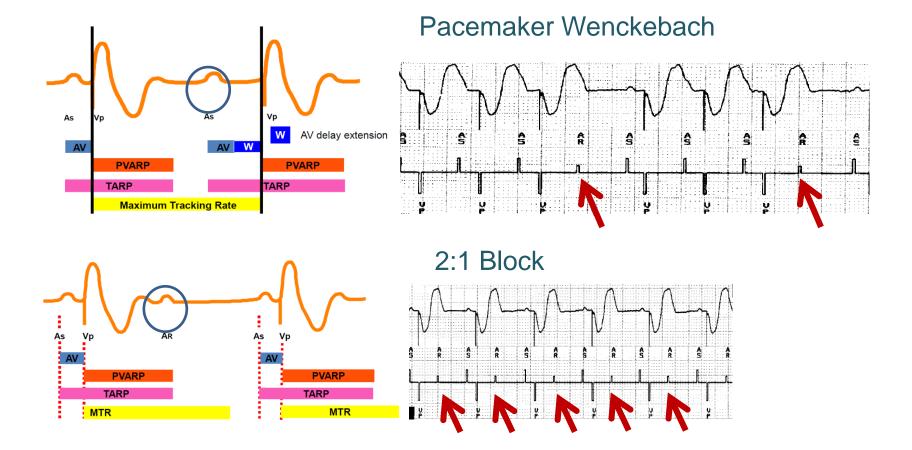
Body Size issue

A single pass VDD lead?

- With growth, easy of atrial sensing lost
- Only large diameter leads are available

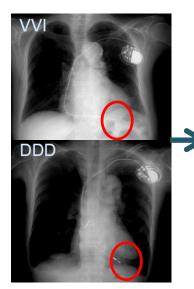

Pacemaker functions for Dual Chamber pacemaker

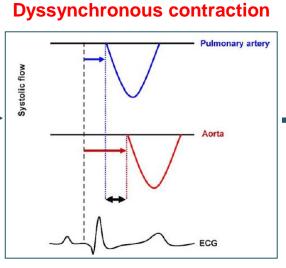
٠


- pacing mode
- lower rate
- pulse width and amplitude
- Sensitivity
- refractory period

- Single chamber
- AV delay
- Post-ventricular atrial refractory period
- mode-switching algorithms for atrial arrhythmia...etc..

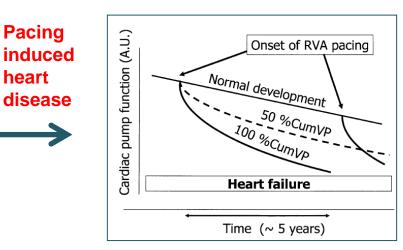
maximum tracking rate (MTR)




"Upper Rate Behavior"

 Exercise heart rates in children may exceed maximum track rate of DDD → Sudden drop of HR

Effect of chronic RV apical pacing



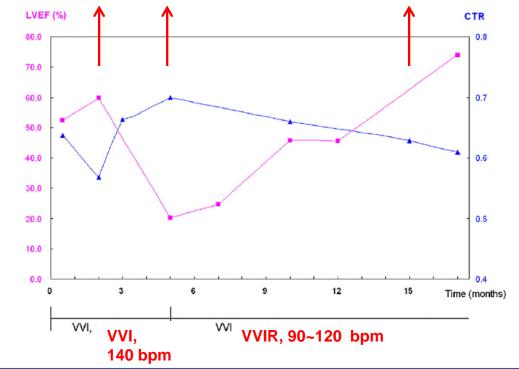
Adverse hemodynamics : Ejection time ↓, IVCT ↑, IVRT ↑

late

early

local strair

sinus rhythm

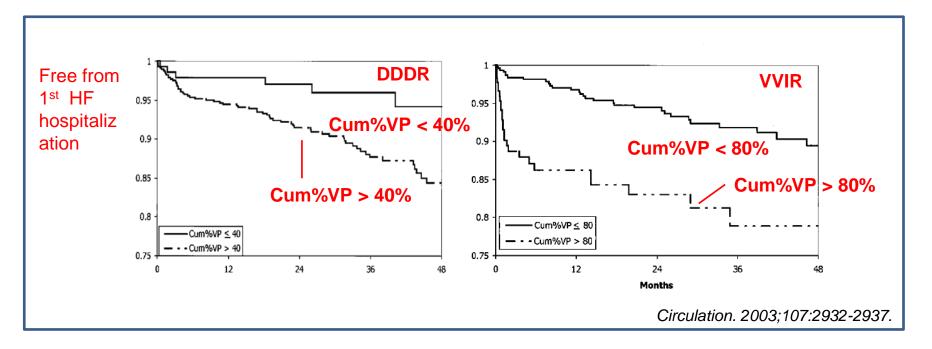

J Am Coll Cardiol 2006;47:282– 8

ventricular pacing

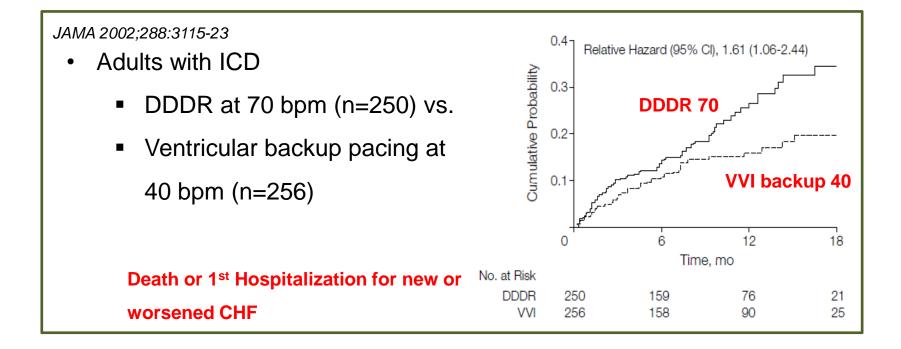
Pacing induced Heart Failure

newborn with
 Congenital CAVB,
 VVI pacemaker

International Journal of Cardiology 131 (2008) e38–e40


Pacing-induced Heart Failure

• Dyssynchronized contraction caused by RV pacing


 \rightarrow factor in the development of heart failure

• Matter of the "frequency" of dyssynchrony

= the amount of V-pacing

Pacing induced Heart Failure

- Sinus-based chronotropy \rightarrow the amount of V-pacing $\uparrow \rightarrow$ HF risk \uparrow
- In children: a higher heart rate with DDD than VVIR pacing \rightarrow risk of HF \uparrow

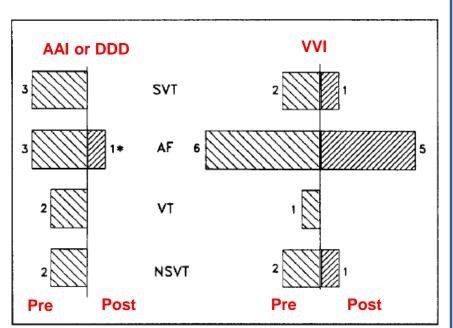
Dual Chamber Ppm vs Single Chamber Ppm in Children

		Dual-chamber	Single- chamber VVI
•	Body size / technical issue	• #2 lead; larger generator	Benefit
•	Higher heart rate related complication	 may cause symptomatic 2:1 AV block 	 Benefit
•	Prevention of chronic pacing induced heart failure	 may increase the amount of V-pacing 	Benefit

Approximate risk estimates for arrhythmias in CHD

		Prevalence	Atrial Arrhythmia		Ventricular Arrhythmia	Other Pacing Needs			
Complexity of CHD	Type of CHD	(in CHD population)	AT	AF	Other		SND	AV block	Dyssynchrony, heart failure
	Patent ductus arteriosus	6-8%							
Simple	Pulmonary stenosis	6-8%							
[Ventricular septal defect	30-32%							
	Secundum atrial septal defect	8-10%							
	Aortic coarctation	5-7%							
	Anomalous pulmonary venous return	0.5-2.5%							
	Atrioventricular septal defect	3-5%							
Moderate	Aortic stenosis	3-5%							
	Ebstein anomaly	0.5-1.5%							
	Tetralogy of Fallot	8-10%							
	Primum atrial septal defect	2-3%							
	Truncus arteriosus	1.5-2%							
	Pulmonary atresia	2-2.5%							
	Double outlet right ventricle	1.5-2%							
Severe	D-transposition of the great arteries	6-7%							
	L-transposition of the great arteries	1-2%							
	Hypoplastic left heart syndrome	3-4%							
	Other (heterotaxy, other single ventricles)	7-10%							

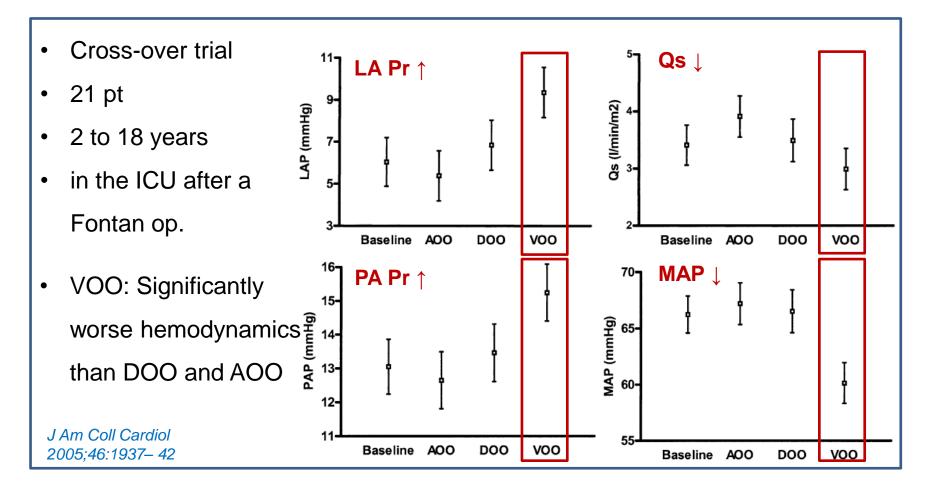
Considerations in Single ventricle morphology and Fontan palliation


- 15% ~ 45%, up to 60% of Fontan Sinus node dysfunction.
- Prone to the development of AV block.
- Fibrosis, scarring and multiple suture lines causes atrial flutter and IART in up to 50%.
- Limited cardiac reserve and function decreases with increased heart rate

J Am Coll Cardiol, 46:1937-1942. Circulation 1998;98(Suppl):II-352-9. Am J Cardiol 1996;77:887-9.

Prevention of tachyarrhythmia in postop. CHD

• Favors physiologic pacing

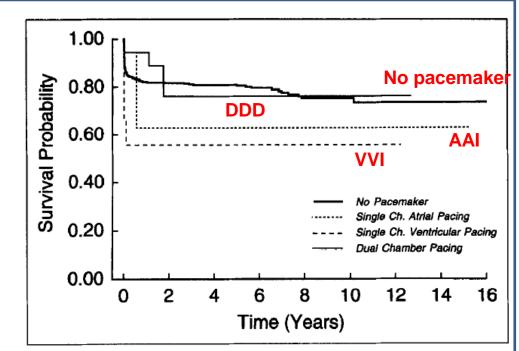

- 21 pacemaker pt with CHD.
- FU for tachyarrhythmia > 12mo.
 before and after pacemaker
- Recurrence of tachycardia:
 - 1 of 10 with AAI or DDD (1 DDD; pacemakermediated tachycardia)
 - 7 of 11 with VVI

Am J Cardiol 1990;65:488-493

AV synchrony is vital in patients with Fontan physiology

 Acute adverse hemodynamic effects of asynchronous ventricular pacing in Fontan

DDD pacing for the Failing AP Fontan Hemodynamics


 DDD improves single ventricle hemodynamics and can help decompensated Fontan patients.

		Ann Thorac Surg 2005;80:1440–4	
9 Failing AP FontanFollow-up: 3.3±1.0 years	Diagnosis CCTGA	Symptoms Pre-Implant IART, sotalol	Symptoms Post-Implant No arrhythmia
	ТА	Ex intolerance IV	Ex intolerance II
 Clinical status: Improved in all 	DILV,TGA	PLE	Relief 4 months
 Arrhythmia (3) : subsided in all PLE (2) : 1 temporary; 1 complete 	TA TA	Ex intolerance IV SND, Afib, amiodarone	Ex intolerance II No arrhythmia
resolution	TA DORV-TGA, MA	IART, sotalol PLE, digitalis, Bradycardia	No arrhythmia No PLE
 HF sx (2) : NYHA IV→II 	Criss-cross, small RV	IART, sotalol	No arrhythmia
Pleural effusion (1) : disappear	TA	CHF, effusions	No effusions

Long-term outcome of Physiologic pacing in Fontan

 The establishment of AV synchrony with dual-chamber pacing may improve long-term survival in Fontan.

- 500 Fontan op
- 46 pacemaker (9.2%)
- 9 VVI; 19 DDD; 18 AAI
- Preop. Hemodynamics: no difference
- No correlation btw. Functional class and pacing mode.

- VVI (4 of 9) vs. DDD (15 of 19) survival (p=0.07)
- AAI (16 of 18) vs. DDD vs. no pacemaker survival (NS)

Am. J. Cardiol. 77, 887–889 (1996).

Dual Chamber Ppm vs Single Chamber Ppm in Children

	Dual-chamber	Single- chamber VVI
CHD issue:	 Benefit – especially for 	
 Risk of atrial arrhythmia ↑ 	Fontan patients	
Concomitant SND + AVB		
Coexisting ventricular		
dyssynchrony, heart failure		

Conclusions and Recommendations

	Dual-chamber	Single- chamber VVI	
Body size / technical issue	#2 lead; larger generator	Benefit	
 Higher heart rate related complication 	 may cause symptomatic 2:1 AV block 	 Benefit 	
Prevention of chronic pacing induced heart failure	 may increase the amount of V-pacing 	 Benefit 	
Pacemaker syndrome	No difference in normal LV function		
Exercise capacity	No difference in normal LV function		
 CHD issue: Risk of atrial arrhythmia ↑ Concomitant SND + AVB Coexisting ventricular dyssynchrony, heart failure 	 Benefit – especially for Fontan patients 		