Intensive Statin Therapy

The Treating to New Targets (TNT) Study

Causes of Death Worldwide, 2001

- Α
- Β Cancer
- С Accidents

- **Respiratory disease** D
- Ε HIV/AIDS
- F **Diabetes**

(2001, WHO)

In Korea,

PTCA

Death due to IHD

IHD is rapidly increasing!

Seven-year Outcome in the RITA-2 Trial PTCA versus Medical Therapy

In RITA-2 an initial strategy of PTCA did not influence the risk of death or MI, but it improved angina and exercise tolerance.

JACC2003:42:1161

AMC Data

Where Should we go?

50% of patients with CAD presented with AMI or SCD.

Prevention of acute coronary events must be the primary goal.

Beyond the Culprit Lesion

Lack of luminal obstruction does not mean a lack of atherosclerosis

How Much of the Patient Are We Treating?

- Atherosclerosis is a diffuse process. If you have it in your coronary vasculature, you have it in your peripheral vasculature and your cerebral vasculature.
- Keep in mind that you've treated only one, 5 millionth of his endothelium that's at risk for having a plaque rupture or a future event somewhere.

No Clear Threshold

ATP III Classification LDL-C < 100mg/dl optimal T-Chol < 200mg/dl desirable HDL-C < 40mg/dl low

The relation between LDL-C
levels and CHD risk is
continuous over a broad range
of LDL levels in many
populations throughout the
world.

Lancet 1986:933-936.

Scandinavian Simvastatin Survival Study (4S)

Statin Therapy in CAD

Heart Protection Study

Statins are the new aspirin.

Lancet 2002:360:7

ASCOT

Collaborative Atorvastatin Diabetes Study (CARDS, Primary Prevention)

Percentage Reductions in Serum LDL-C according to Statin and Daily Dose

How Far Will the Benefits Go?

It is not unclear whether lowering lipid levels further would increase the clinical benefit.
HPS is not designed to answer the question of whether a lower LDL-C is better: The comparison (statin vs placebo) can only address the question of whether treatment better than no treatment. → We must consider treatment vs treatment.

Lower IS Better?

% Patients with Event*

- N=4,162 ACS (early invasive-3/4; multiple medications)

- Among patients who have recently had an ACS, an intensive lipid-lowering statin regimen provides greater protection against death or major cardiovascular events than does a standard regimen.

NEIM 2004:350:1495

A to Z in Patients With ACS

- No early divergence in even rates despite differences in LDL-C

- A favorable trend toward reduction of MACE.

IAMA2004:292:1307

The Treating to New Targets (TNT) Study: Rationale

Atherosclarosis 1000.1/13(suppl 1).917

TNT: Objective

TNT is the first randomized clinical trial to prospectively assess the efficacy and safety of treating patients with stable CHD to LDL-C levels significantly below 100 mg/dL

Study Design

Patient population:

- CHD
- LDL-C: 130-250 mg/dL (3.4-6.5 mmol/L)
- Triglycerides ≤600 mg/dL (≤6.8 mmol/L)

Primary efficacy outcome measure:

- Time to occurrence of a major CV event:
 - CHD death
 - Nonfatal, non-procedure-related MI
 - Resuscitated cardiac arrest
 - Fatal or nonfatal stroke

Changes in LDL-C

Changes in Total Cholesterol

Changes in HDL-C

LaRosa JC, et al. N Eng J Med. 2005;352

Changes in Triglycerides

Primary Efficacy Outcome

*CHD death, nonfatal non-procedure-related MI, resuscitated cardiac arrest, fatal or nonfatal stroke

Stroke (Fatal or Nonfatal)

Primary and Secondary Efficacy Outcome Measures: Hazard Ratios

Primary Efficacy Measure	HR	P-value
Major CV event	0.78	0.0002
– CHD death		0.09
– Nonfatal, non-PR MI	0.78	0.004
- Resuscitated cardiac arrest	0.96	0.89
- Fatal/nonfatal stroke	- 0.75	0.02
Secondary Efficacy Measures		
Any cardiovascular event	0.81	<0.001
– Major coronary event*	0.80	0.002
– Any coronary event	0.79	<0.001
- Cerebrovascular event	0.77	0.007
– Hospitalization for CHF	0.74	0.01
– Peripheral arterial disease	• 0.97	0.76
All cause mortality —	1.01	0.92
0.5	1 1.5	
Atorvastatin 80 mg better	Atorvastatin 10 mg better	

Mortality

	No. of patients (%)		
	Atorvastatin 10 mg (n=5006)	Atorvastatin 80 mg (n=4995)	
All-cause mortality	282 (5.6)	284 (5.7)	
Cardiovascular CHD death Stroke death Hemorrhagic stroke death	155 (3.1) 127 (2.5) 8 (0.2) 2 (0)	126 (2.5) 101 (2.0) 7 (0.1) 3 (0.1)	
Noncardiovascular Cancer Trauma Other	127 (2.5) 75 (1.5) 9 (0.2) 43 (0.9)	158 (3.2) 85 (1.7) 15 (0.3) 58 (1.2)	

Safety - Adverse Events

	No. of patients (%)		
	Atorvastatin 10 mg (n=5006)	Atorvastatin 80 mg (n=4995)	
Total	5.8	8.1	
Discontinuation	53	7.2	
Myalgia	4.7	4.8	
Rhabdomyolysis*	0.06	0.04	
AST/ALT elevation >3 × ULN	0.2	1.2	

*No cases were considered by the investigator with direct responsibility for the patient to be causally related to atorvastatin, and none met ACC/AHA/NHLBI criteria² for rhabdomyolysis

Conclusions

- Treatment with atorvastatin 80 mg to an LDL-C of 77 mg/dL provided significant additional clinical benefit to patients with stable CHD currently perceived to be well controlled at levels around 100 mg/dL.
- The incremental benefits observed with atorvastatin 80 mg included significant reductions in the risk of coronary events and stroke
- This improved clinical outcome was achieved without significant additional safety risk.

A Proof of Concept Study

- The TNT results herald "a new era in the treatment of established coronary disease," showing that lower is better in stable CHD patients.
- The absolute importance of bringing statins to patients at risk and to wider populations such as people with hypertension or with diabetes

Event Rates Plotted Against LDL-C in Secondary Prevention

No Threshold LDL-C Level Below Which No Further Reduction In Risk Occurs

Baseline

Ending

At any level of LDL-C, the change in relative risk is the same as at any other LDL-C levels (log-linear relationship).

How Low Is Too Low ? physiologically ideal range of cholesterol

- Cholesterol is an essential component of the cell membrane and an obligate precursor for bile acid, steroid hormone, and vitamin D synthesis.
- People with heterozygous hypobetalipoproteinemia have total cholesterol levels as low as 80 mg/dl (LDL: 30 mg/dl). This condition is associated with longevity, presumably due to the absence of atherosclerosis, but the lack of other adverse effects that might have accompanied a low LDL level suggests that such low levels of LDL are safe.

Safety and Efficacy Regarding Lowering LDL-C Levels beyond the Set Guidelines

Endpoints	80-100 (n=256)	60-80 (n=576)	40-60 (n=631)	<40 (n=256)
Composite(%)	26.1	22.2	20.4	20.4
Death(%)	1.1	1.4	1.3	0.5
Stroke(%)	0.8	0.9	0.5	1.6
MI(%) *	10.3	6.8	4.5	6.3
CK > 10x	2.3	3.1	3.2	1
AST > 3x	3.1	0.7	1.9	2.6

The lack of an increase in side effects (myositis, altered liver function tests) and the trends toward a beneficial effect are encouraging (PROVE IT – TIMI 22 study).

Is Intensive Lipid Lowering Justified in Stable CHD Patients?

- Fewer cardiovascular deaths were offset by more non-cardiovascular deaths:
 - CHD death 26 \downarrow , Non-cardiovascular death 31[↑]
 - \rightarrow by chance or an increased risk of non-CV death?
- Further reassurance before a major shift
 - ongoing trials (SEARCH, IDEAL)

Intensive Statin Therapy Shift or Wait?

Very-high risk group
 Lower is better (NCEP III updated)

Stable CAD

- We need further reassurance as to the safety of this approach.

Optimal LDL-C