Efficacy of Beta-Blockers for First-line Antihypertensive; All Beta-Blockers Same?

> 연세대학교 원주의과대학 순환기 내과 유 병수

Efficacy of Beta-Blockers for First-line Antihypertensive; All Beta-Blockers Same?

 Current issue with beta-blocker in Hypertension
 Comparisons between old and new drugs
 Logical Practice

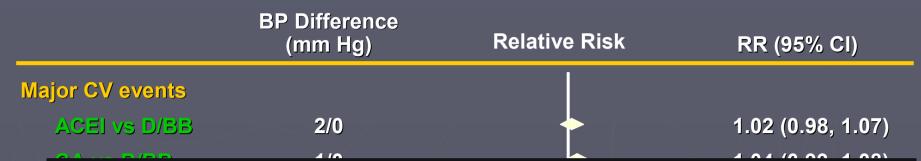
Current Issue

Lowering blood pressure reduces cardiovascular risk

Small SBP reductions yield significant benefit

Meta-analysis of 61 prospective, observational studies One million adults, 12.7 million person-years

2 mmHg decrease in mean SBP 7% reduction


in risk of ischaemic heart disease mortality

10% reduction in risk of stroke mortality


Lewington et al. Lancet. 2002;360:1903-1913

Current Issue

Comparisons of Different Drugs

- There were **no significant differences** in total major cardiovascular events between regimens based on ACE inhibitors, calcium antagonists, or diuretics or blockers.
 - Treatment with any commonly-used regimen reduces the risk of total major cardiovascular events, and **larger reductions** in blood pressure produce larger reductions in risk.

Current Issue

Atenolol in hypertension: is it a wise choice? Carlberg B, Lancet. 2004 ;364:1684-9. Should beta-blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lindholm LH, Lancet 2005;366:1545-53. Do Beta-blockers Have a Role in Hypertension Any Longer? Henry Black, Medscape Medical News August 11, 2006

Atenolol vs. other antihypertensives

	Relative risk	
Outcome	with atenolol	95% Cl
Stroke	1.26	1.15–1.38
MI	1.05	0.91–1.21
All-cause mortality	1.08	1.02–1.14

Lindholm LH, et al. Lancet 2005

β-Blockers vs. Fatal/Nonfatal Stroke

%5.0

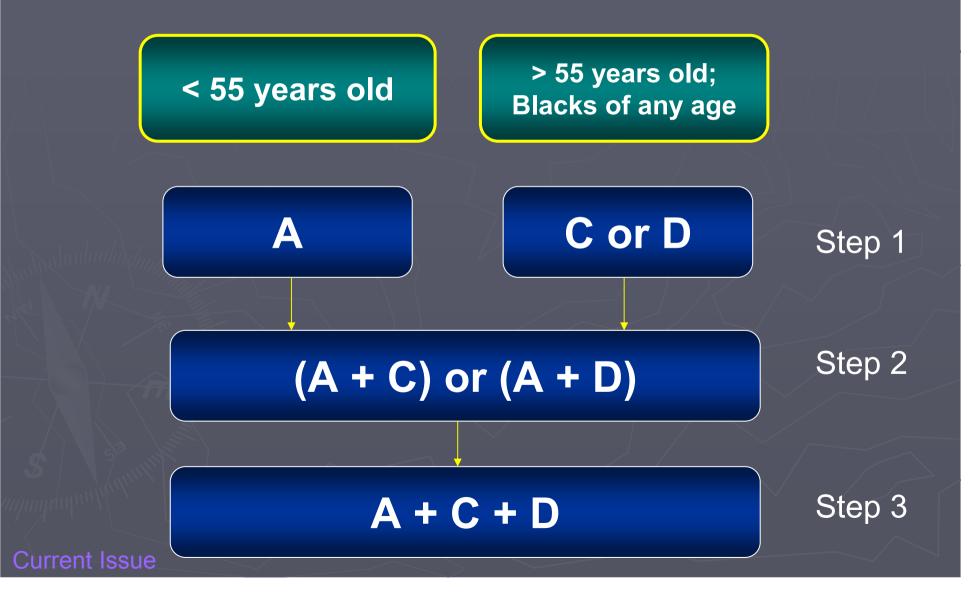
Atenolol ± thiazide 23% 4.0 3.0 Amlodipinel ± perindopril 2.0 1.0 0.02.0 3.0 1.0 4.0 5.0 Years **0**.0 80.0 25% 0.07 Atenolol 0.06 0.05 Losartan 0.04 0.03 0.02 0.01 0.00 Study Day 180 360 540 720 900 1080 1260 1440 1620 1800 1980

Current Issue

How was the guideline developed? (Why do rapid update?)

Issue date: June 2006

Hypertension


Management of hypertension in adults in primary care

This is a partial update of NICE clinical guideline 18

NICE clinical guideline 34 Developed by the Newcastle Guideline Development and Research Unit, the section on prescribing drugs has been updated by the British Hypertension Society and the National Collaborating Centre for Chronic Conditions Focusing primarily on head-to-head comparisons ► The principal efficacy outcomes; MI, stroke and all-cause mortality. Because of the efficiency of beta blocker-based treatment at reducing cardiovascular events, especially stroke.

Current Issue

BHS/NICE Guideline on Treatment of Hypertension in Adults in Primary Care

Efficacy of Beta-Blockers for Firstline Antihypertensive; All Beta-Blockers Same?

 Are all beta blockers equally ineffective?
 Other beta blockers might give different results.

Efficacy of Beta-Blockers for Firstline Antihypertensive; All Beta-Blockers Same?

 Current issue with beta-blocker in Hypertension
 Comparisons between old and new drugs
 Logical Practice

Selectivity of β-Blocking Agents

Cardiotoxicity

Comparison

Bristow MR. Circulation. 2000;101:558-569

Potential Cardiovascular Benefits of β-Blockade

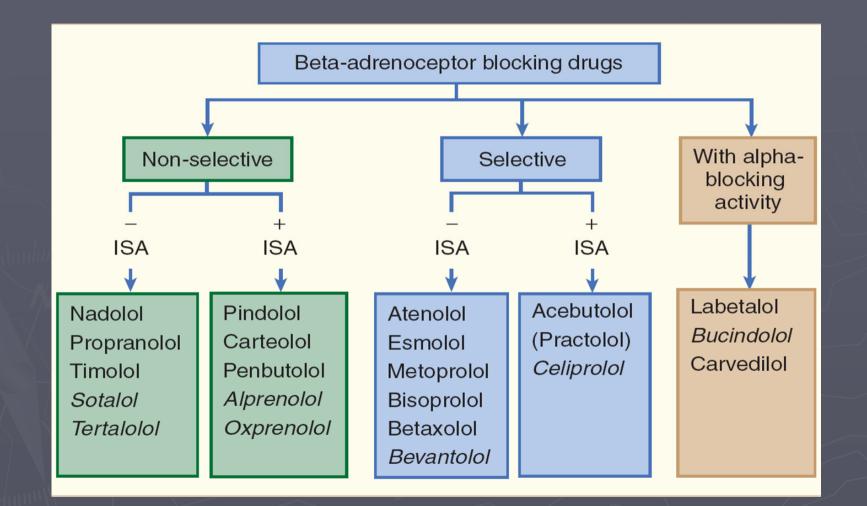
Anti-atherogenic

Reduces inflammation, shear stress, endothelial dysfunction, and lesion progression

Anti-arrhythmic

- Decreases HR and sympathetic activity
- Reduces sudden death risk

Anti-ischemic


- Decreases HR and BP
- Prolongs diastole (filling coronary arteries)
- Cardio-protective
 - Reverses cardiac remodeling
 - Prevents HF

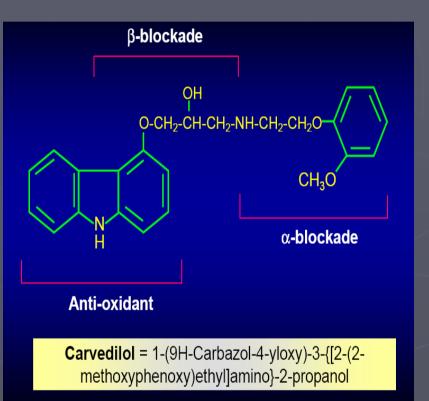
β-Blockers : Pharmacological Effects

β1-Selectivity

- Intrinsic sympathomimetic activity or partial agonist activity
 Solubility olimination and duration of
- Solubility, elimination, and duration of effects
- Combined α, β-adrenergic blocking activity
 Extended-release preparations

β-Blocking Agents ; Classification

Properties of selected β**- blockers**


	β ₁ blockade	β ₂ blockade	α ₁ blockade	ISA	Ancillary effects*
Carvedilo	+++	+++	+++	-	+++
Metoprolo	ol +++	-	-	-	-
Bisoprolo	+++	-	-	-	-
Bucindolc) +++	+++	-	++	-
Nebivolol	+++	-	-	-	++
*anti-oxida	nt, inhibit ap	poptosis, inh	ibit endotheli	n, NO	generation

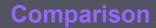
Bisoprolol

Beta-1 receptor selective No adverse effect on lipid metabolism No adverse effect on glucose metabolism Better than atenolol; as good as newer drugs Better 24 hour coverage Sustained BP control over long term No sudden changes during exercise

Carvedilol

 β -and α 1-adrenergic receptor blocker Potent antioxidant effect ; 10-fold more potent than Vit-E Blocks the production of angiotensin II Suppresses the synthesis of endothelin Antiproliferative activity

Nevibolol


 \blacktriangleright Nebivolol is a vasodilating β -blocker, vasodilating effect mediated by the endothelial NO pathway, BP lowering effect is linked to a reduction in **PVR** Endothelium-derived NO: the regulation of large arterial stiffness

Comparisor

Do β-blockers differ in their efficacy and safety in Hypertension?

β blockers differ in their pharmacological properties

 β blockers differ in their clinical effects: Atenolol, Metoprolol, Bisoprolol, Carvedilol, Nevibolol,

Why not Beta Blocker?

Major Reason 1:

increased risk of new-onset diabetes, especially when used in combination with thiazide diuretic

Major Reason 2:

 compared with other agents, BB generally less effective in reducing cardiovascular events, especially stroke.

Are all beta blocker equally ineffective? Other beta blocker might give different results. Soft Endpoint : Metabolic Effect, DM


Hard Endpoint : Stroke or CVD

Adverse metabolic effects of β - blockers

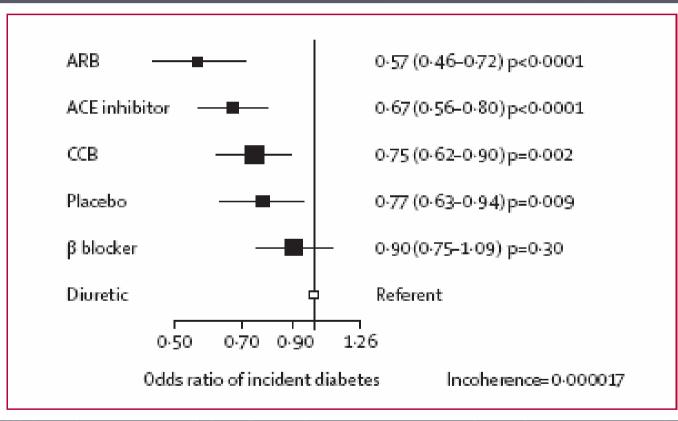
Lower activity of LPL Reduce LCAT activity Increase body weight Impair first phase insulin secretion Reduce insulin clearance Reduce peripheral blood flow and increase TPR

Jacob S et al. *AmJ Hypertens*.1998;11:1258–1265.

β-Blockers and the Risk of Developing New-Onset DM

Prospective study of 9193 patients with hypertension aged 55 to 80 and followed for 4.8 years. Analysis of 7998 without diabetes at baseline

28% Increased Risk β-blocker RR 1.28 (1.04-1.57) p<.05 1.5 1.28 1.17 1.0 0.98 1 0.91 0.5 0 Thiazide β-blocker ACEI None CCB $ARIC^{2}$


Prospective study of 12,550 patients with diabetes aged 45 to 64 and followed for 6 years. Multivanate analysis of 3804 who had hypertension at baseline.

LIFE. Losartan intervention For Endpoint Reduction; ARIC. Atherosclerosis Risk in Communities.

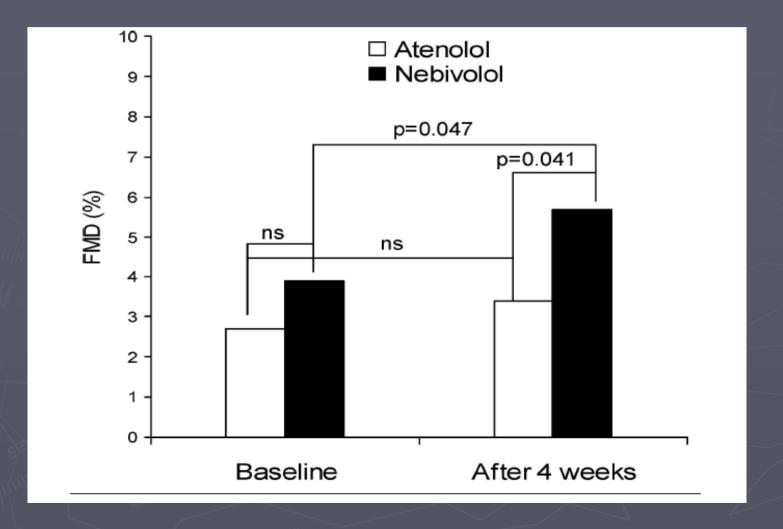
Comparison

¹Dahiof B, et al. Lancet. 2002;359:995-1003. ²Gress TW. Et al. N Engl J Med. 2000;342:905-912.

Incident diabetes of network metaanalysis of 22 clinical trials

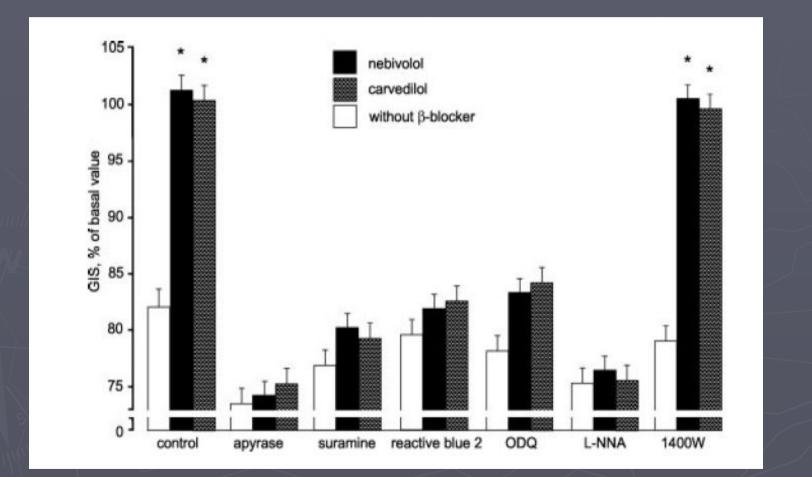
Elliott WJ, Lancet 2007; 369: 201-07

Effect of β - Blockers on Insulin Sensitivity

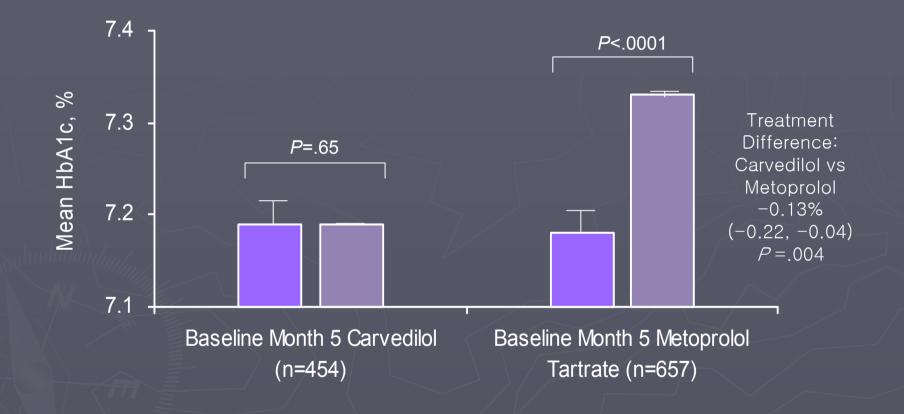

Beneficial metabolic effects of third generation β - blockers

	Insulin sensitivity	Triglyceride(%)	HDL(%)	T.Chol(%)
Propranolol	- 33%	+ 25%	- 10%	+ 9%
Metoprolol	- 21%	+ 30%	- 7%	- 1%
Atenolol	- 22%	+ 18%	- 9%	
Pindolol	- 17%		=	=
Carvedilol	+ 13%		=	=
Celiprolol	+ 35%	- 15%	+ 5%	

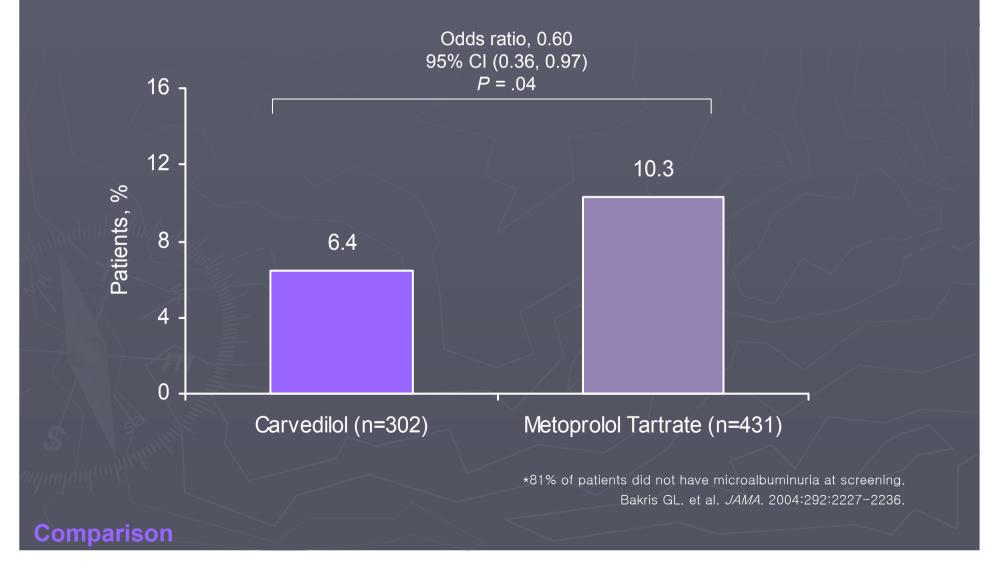
Comparison


Jacobs S et al. Am J Hypertens 1998;11:1258-1265

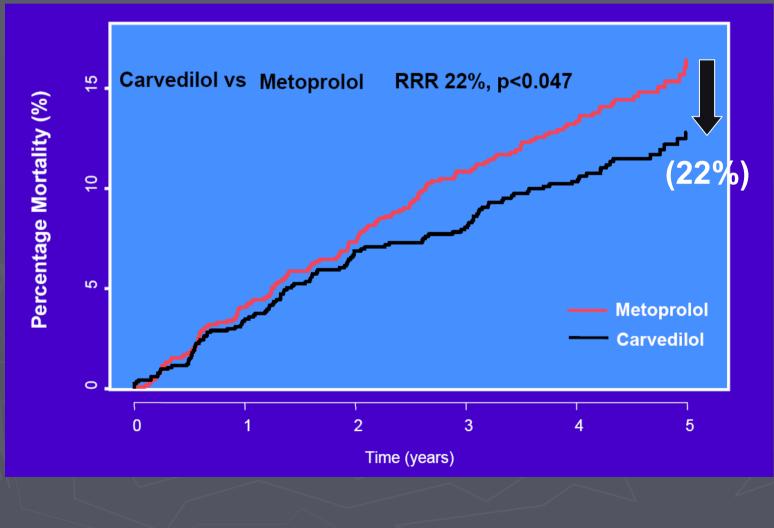
3rd generation β - blockers & endothelial function


Lekakis JP. Cardiovasc Drugs Ther 2005;19:277-281

3rd generation β - blockers & endothelial function


Kalinowski L et al. Circulation 2003;107:2747-2752

GEMINI: Hemoglobin A_{1c}



1111 patients (90%) were evaluable for efficacy, having both a valid baseline and at least one on-therapy HbA1c assessment. Bakris GL. et al. *JAMA*. 2004;292;2227-2236.

Development of Microalbminuria in Previously Normoalbuminuric Participants

COMET; New Diabetes Endpoint

Are all beta blocker equally ineffective? Other beta blocker might give different results.

Soft Endpoint : Metabolic Effect, DM Hard Endpoint : Stroke or CVD

Atenolol vs. other antihypertensives

Outcome	Relative risk with atenolol	95% CI
Stroke	1.26	1.15–1.38
MI	1.05	0.91–1.21
All-cause mortality	1.08	1.02–1.14

Atenolol is less useful than other drugs in reducing cardiovascular events (especially strokes) amongst hypertensive patients

Lindholm LH, et al. Lancet 2005

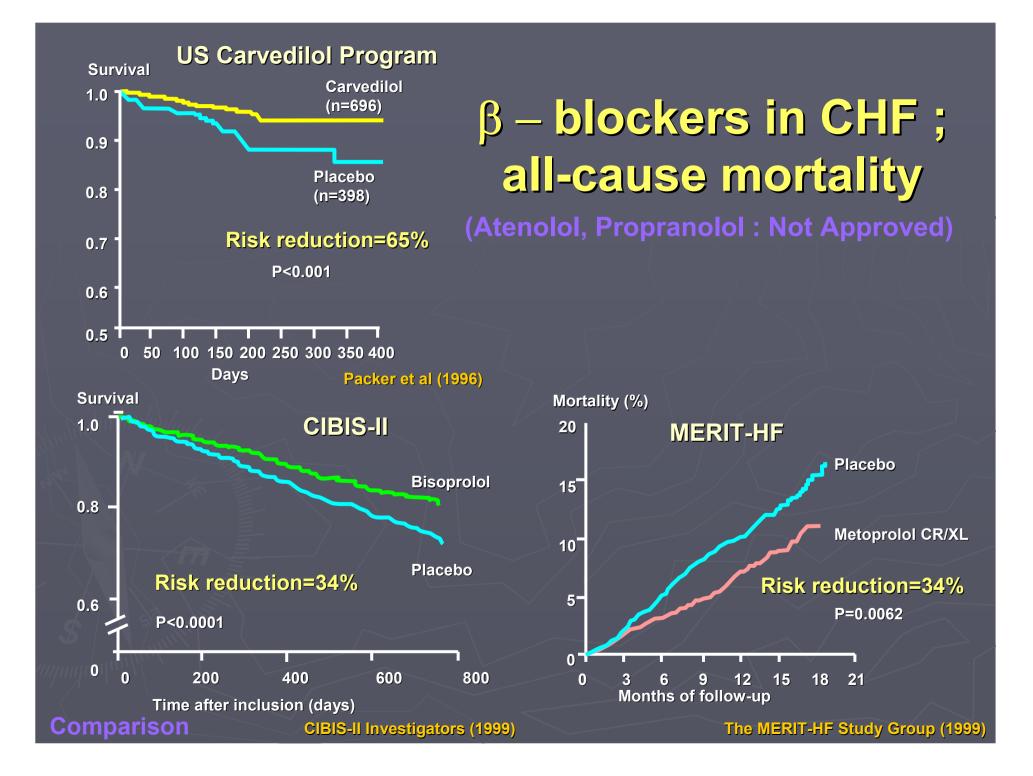
Non-atenolol beta blockers vs. other antihypertensives

	Relative risk	
Outcome	with beta blockers	95% CI
Stroke	1.20	0.30–4.71
MI	0.86	0.67–1.11
All-cause mortality	0.89	0.70–1.12

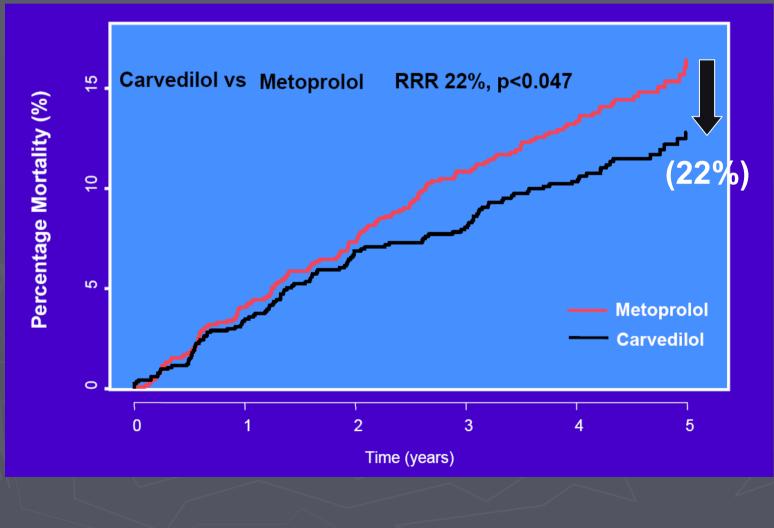
Non-atenolol β blockers may be equivalent to other antihypertensive drugs in cardiovascular protection

Lindholm LH, et al. Lancet 2005

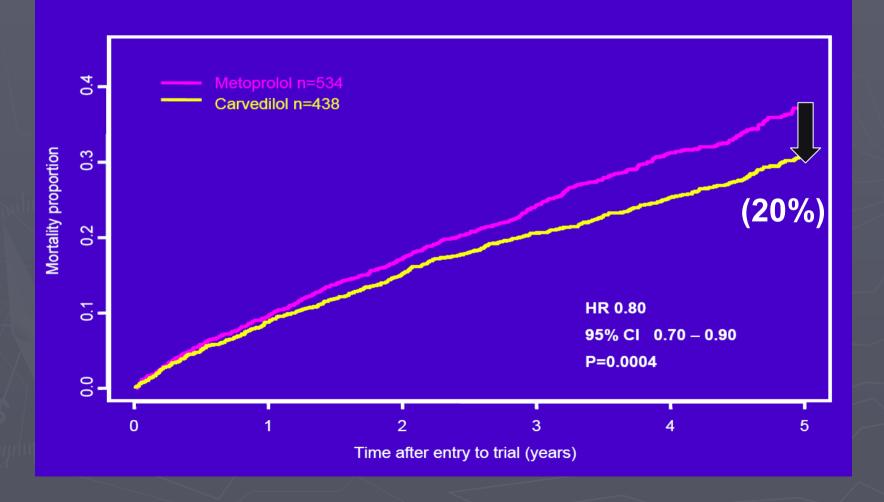
Clinical Evidence ?

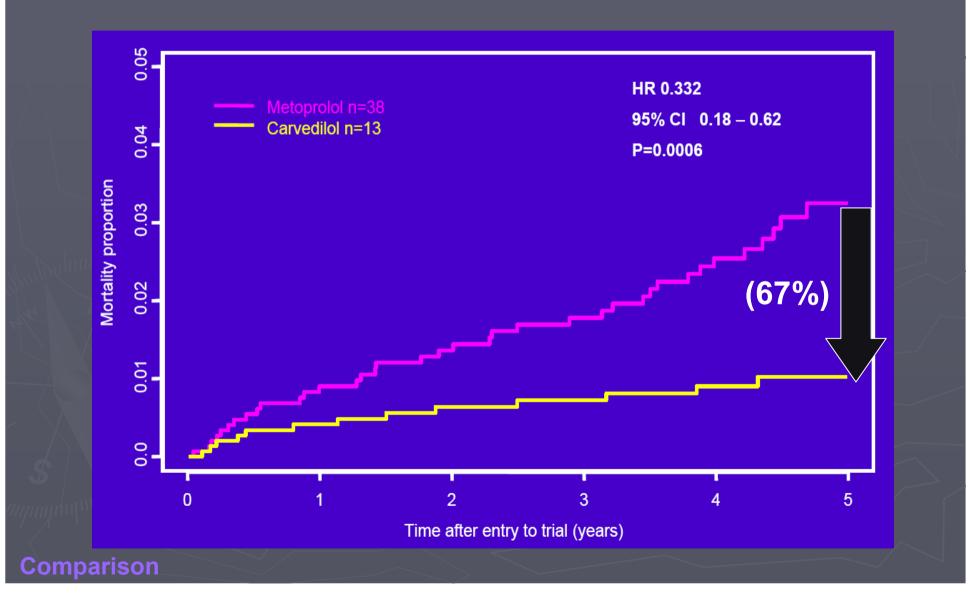

 \triangleright β blockers differ in their pharmacological properties. Carvedilol, nebivolol, or other new generation beta-blocker may have good biologic properties. Clinical Evidences for CV outcomes ?

Do β-blockers differ in their efficacy and safety in heart failure?


β blockers differ in their pharmacological properties

β blockers differ in their clinical effects: Metoprolol, Bisoprolol, Carvedilol




COMET; New Diabetes Endpoint

COMET : Cardiovascular Mortality

COMET : Stroke Death

Are all beta blocker equally ineffective?
 Other beta blocker might give different results.

Soft Endpoint : Metabolic Effect, DM

Hard Endpoint : Stroke or CVD

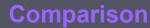
Effects of Different Antihypertensive Agents on Risk Factors

	Diuretic	β-blocker	α-blocker	CCB	ACEI
Blood Pressure	+ <	+	÷	∕	+
Cholesterol	-	NS	+	NS	NS
HDL-cholesterol	NS	- /	NS	NS	NS
Glucose Intolerance	-	-	÷	NS	+
Hyperinsulinemia			+	NS	+
Physical activity	NS		÷	NS	NS
LV hypertrophy	-	+	÷	+	+

Kaplan NM. J Hypertens 1990; 8(Suppl.7): S175-9

Quality data in ALLHAT (n=42,448)

Drug Discontinuation, 50% (> 20,000)
 Drug Cross Over, 20% (about 10,000)
 Patient lost to follow-up, 2.6% (1,176)

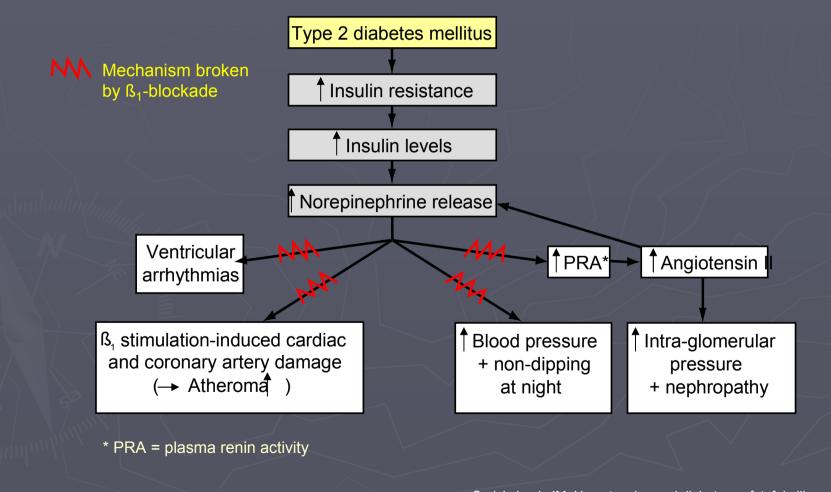

ALLHAT was huge trial with low precision and have numerous problems.

Early Stop in patients with Alpha-blocker.

Summary of Attributes of Newer Generation β-Blockers in Hypertension Significant reduction in CV events, including in patients with diabetes, post-MI LVD, and HF No adverse effect on fasting plasma glucose Do not affect lipid and triglyceride metabolism Maintain renal blood flow Less likely to cause cold extremities AE profile comparable to placebo in clinical trials Comparison

Clinical Evidence ?

Carvedilol, nebivolol, or other new generation beta-blocker may contribute to a reduction in CV risk.
 Whether these are clinically beneficial remains undetermined.


Efficacy of Beta-Blockers for Firstline Antihypertensive; All Beta-Blockers Same?

- Current issue with beta-blocker in Hypertension
 Comparisons between old and new drugs
- Logical Practice
 - DM & Compelling Indications
 - Young Age
 - Tolerability

Compelling Indication in β - **Blockers**

			Recomme	ended Drugs			
Compelling Indication*	Diuretic	BB	ACEI	ARB	CCB	Aldo ANT	Clinical Trial Basis†
Heart failure	٠	•	٠	٠		٠	ACC/AHA Heart Failure Guideline, ¹³² MERIT-HF, ¹³³ COPERNICUS, ¹³⁴ CIBIS, ¹³⁵ SOLVD, ¹³⁶ AIRE, ¹³⁷ TRACE, ¹³⁸ ValHEFT, ¹³¹ RALES, ¹⁴⁰ CHARM ¹⁴¹
Post-myocardial infarction		٠	٠			٠	ACC/AHA Post-MI Guideline,142 BHAT,143 SAVE,144 Capricorn,145 EPHESUS146
High coronary disease risk	٠	٠	٠		٠		ALLHAT, 109 HOPE, 110 ANBP2, 112 LIFE, 102 CONVINCE, 101 EUROPA, 114 INVEST 147
Diabetes	٠	٠	٠	٠	٠		NKF-ADA Guideline, ^{88,89} UKPDS, ¹⁴⁸ ALLHAT ¹⁰⁹
Chronic kidney disease			٠	٠			NKF Guideline, ⁸⁹ Captopril Trial, ¹⁴⁹ RENAAL, ¹⁵⁰ IDNT, ¹⁵¹ REIN, ¹⁵² AASK ¹⁵³
Recurrent stroke prevention	•		•				PROGRESS111

ß₁-blockade benefits patients with type 2 diabetes and hypertension

Practice

Cruickshank JM. Hypertension and diabetes: a fateful alliance. Satellite symposium from the XXII Congress of the ESC. Amsterdam 26-30 August 2000

DM and Beta Blocker in HTN UKPDS:ACE Inhibitor vs. β-Blocker

				Relative Risk & 95% C	
	RR	P	0.5	<u>, 1</u> / 1	2
Any DM-related endpoint	1.10	.43			
Diabetes-related deaths	1.27	.28			
All-cause mortality	1.14	.44			
Myocardial infarction	1.20	.35			
Stroke	1.12	.74	-		
Microvascular disease	1.29	.30			
Heart failure	1.21	.66	\leftarrow		
			}/	Favors Favors ACE inhibitor β-blocker	

1148 hypertensive patients with type 2 diabetes. Of the 758 patients randomized to tight control of blood pressure. 400 were allocated to captopril and 358 to atenolol. Follow-up was 9 years.

UKPDS Group. BMJ. 1998:317:713-720.

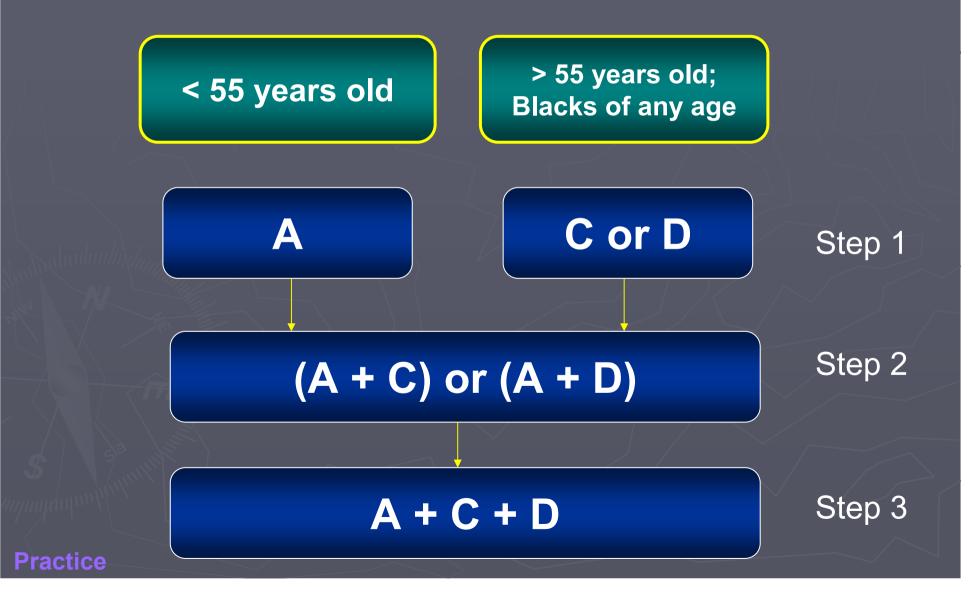
American Association of Clinical Endocrinologists 2006 Guidelines for Type 2 Diabetes With Hypertension

Indication	Recommendation	Highest Level of Evidence	Grade
Type 2 diabetes	Goal BP \leq 130/80 mm Hg	2	A
	Goal BP \leq 120/75 mm Hg When severe proteinuria Exists	1	A
	ACEI or ARB as first-or second-line agent	1	А
	Thiazide diuretic as first-or second-line agent (in low dosage with adequate potassium replacement or sparing)	1	А
	BB (preferably drugs that block both α and β receptors) as second-or third-line agent		A
	CCB (preferably nondihydropyridine) as second-, third-, or fourth-line agent	1	А
		\sim /	

Torre JJ. et al. AACE Hypertension Guidelines. Endocr Pract. 2006;12:193-222.

Key Messages in the NICE/BHS Hypertension Guideline Update:

Atenolol was the beta-blocker used in most of these studies and, in the absence of substantial data with other agents, it is unclear whether this conclusion applies to all beta-blockers.


However, if atenolol studies are excluded, the total evidence on the use of beta-blockers for the treatment of hypertension is much less than for the other main drug classes.

It was therefore concluded that in the absence of other compelling indications for beta-blockade (for example, angina), beta-blockers should not be a preferred initial treatment for hypertension.

Clinical Results vs. Interpretation Alcohol consumption vs. CV risk France vs. Scotland or English Italian vs. English Japanese vs. American Chinese vs. American • In an ethnic group with using an English letters, there

are higher CV risk than others.

BHS/NICE Guideline on Treatment of Hypertension in Adults in Primary Care

Prospective Hard-event Trials in Hypertension involving β-Blockers

Trial	Drugs	Mean age (yr)	Starting BP (mmHg)	Pulse- Pressure (mm Hg)
Studies with favorable t	o beta-blockers			
IPPPSH	Oxyprenolol	<mark>52</mark>	173/108	65
MRC-mild	Prepranolol	51	161/98	63
MAPHY	Metoprolol	52	167/108	59
UKPDS	Atenolol	56	159/94	65
Studies with Unfavorabl	e to beta-blockers	3		
HEP	Atenolol	69	196/99	97
MRC-elderly	Atenolol	70	185/91	94
LIFE(whole)	Atenolol	67	174/98	76
LIFE(DM)	Atenolol	67	177/96	81

Why happen the different result between UKPDS & LIFE Study ?

		UKPDS	LIFE
Age		Younger & middle age	Elderly
Mean a	age	56.3(56)	67.4(Around 70)
Vascul	ar system	Relatively compliance	non-compliant, stiff
Pulse (mmHg	pressure g)	65	81
β1 rece respon		Relatively	decreased

Physician Concerns About Adding β-Blockade in Hypertension

<u>Metabolic</u>

- Worsening HDL
- Increased Apo B
- Negative effects on glucose metabolism
- Negative effects on renal blood flow
- Masked hypoglycemia

<u>Tolerability</u>

- Fatigue
- Impotence
- Weight increase
- Peripheral vasoconstriction (cold extremities)
- Depression

Traditional β-Blocker Effects on Peripheral Vasculature

Peripheral Vasoconstriction

Unopposed α_1 stimulation

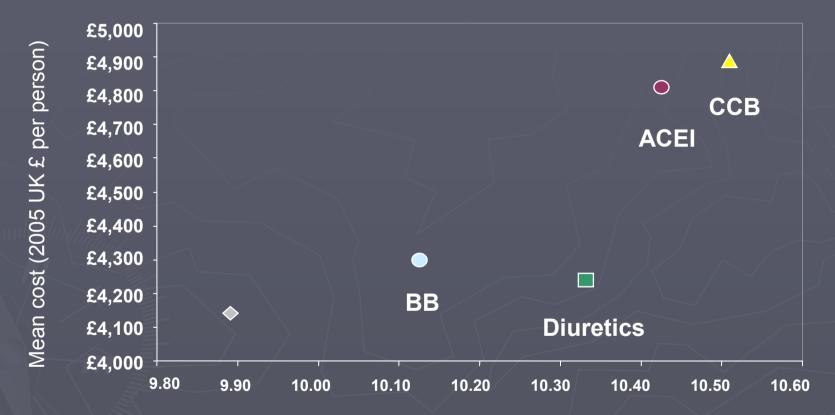
 Increased Total Peripheral Resistance

Decreased Renal Blood Flow


Decreased microvascular surface area within skeletal muscle for insulin-mediated entry of glucose

Erectile Dysfunction

Bell DSH. *Endocrinologist*. 2003;13:116-123. Packer M. *Prog Cardiovasc Dis*. 1998;41:39-52. Man In't Veld AJ. *Am J Hypertens*. 1998;1:91-96.


Tolerability / Cost

New Generation Beta Blocker : relatively good tolerance
Extended Release or long half life
Less side Effect
In some drugs, drug cost is so high.

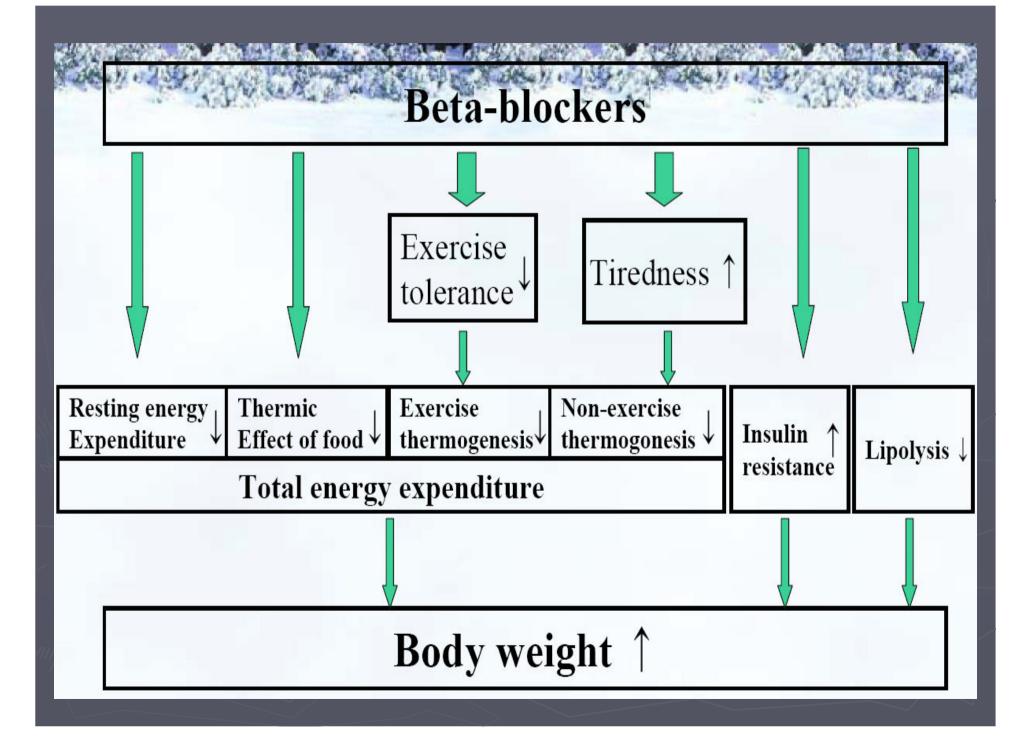
Cost effectiveness

Base case results 65-year-old male 2% annual CVD risk, Cost effectiveness plane

Mean effect (QALYs per person, discounted)

◆ NI □ D ▲ C ● B ● A

partial update of NICE Clinical Guideline


Conclusions

The downgrading of beta blockers as a routine initial therapy for hypertension, especially atenolol in primary care. But, it is unclear whether this conclusion applies to all beta- blockers.

New generation beta blockers have good biologic and metabolic evidences, but further clinical outcome study will be needed.

Thank You for Your Attention

Carvedilol' PDs, PKs and Elimination

	Carvedilol	Atenolol
Pharmacodynamics		
β_1 -Blackade potency	x10	x1
β_1 -selectivity	Ø	++ /
ISA	Ø	Ø
Memb stabilizing activity	++	Ø
Pharmacokinetic		
Absorption	>90%	~50%
Bioavailability	~30%	~40%
Dose-dependent bioavailability	yes	no
Interpt. variation of pl. conc	x 5-10	x 4
Lipid solubility	moderate	weak
Elimination		
Half life	7-10 hr	6-9 hr
Elimination route	hepatic	renal
Active metabolite	yes	no
Drug accumulation in renal ds.	no	yes

Beta Blocker Classification

	GENERATION/CLASS	<u>K(β1)</u>	<u>β1/β2</u>	<u>β1 /α1</u>
Propranolol	1 st /nonsel	4.1	2.1	-
Metoprolol	2 st /β1-sel	45	74	-
Bisoprolol	2 st /β1-sel	121	119	
Carvedilol	3 rd /β-vasod	4	7.3	2.4
Nebivolol	3 rd /β-vasod	5.8	1700	66
Bucindolol	3 rd /β-vasod	3.6	1.4	-

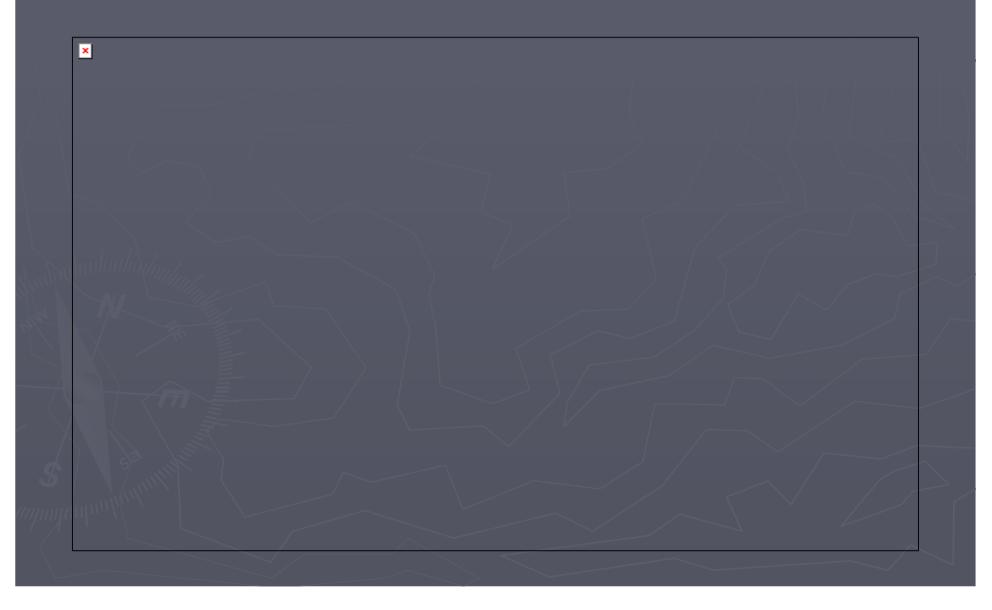
Beta Blocker Classification

DRUG	β₁-BLOCKADE POTENCY RATIO(PROPRANOLOL=1)	RELATIVE β ₁ SELECTIVITY	ISA	Ancillary Effect
Propranolol	1.0	0	0	
Atenolol	1.0	++	0	0
Bisoprolol	10.0	++	0	0
Carvedilol	10.0	0	0	÷÷
Labetalol	0.3	0	+?	0
Metoprolol	1.0	++	0	0
Nebivolol	10.0	++	0	++

Adverse metabolic effects of beta blockers

Peripheral vasoconstriction: increased insulin resistance

► Inhibition of LPL → increase in triglyceride and small dense LDL


▶ Inhibition of LCAT \rightarrow decrease in HDL

Bell DSH. Curr Med Res Opn 2005;21:1191-1200

Effect of Stimulating α **- and** β - adrenoreceptors

	Cardiac	Vascular	Neuroendocrine	Metabolic
α1	Minimal increase contractility	Venous and arterial constriction	Stimulation of renal renin release via arterial contriction	-
α2	Electrophysiologi cal effect?	Venous and arterial constriction (less potent than α1)	Inhibition of norepinephrine release	Antagonises effect of β1-stimulation
β1	HR↑ Contractility↑ Excitability↑ hypertrophy↑	-	Stimulation of renin release	Lipolysis Platelet aggregation
β2	As β1, but less potent	Coronary and skeletal muscle arterial dilatation	-	Glycogenolysis

COMET : Risk of Death

Beta-blockers are no longer preferred as a routine initial therapy for hypertension

Beta-blockers may be considered in :

- younger women of child-bearing potential
- patients with HTN & evidence of increased sympathetic drive
- intolerance / contra-indication to ACEI and ARBs

In these circumstances, if initial therapy is with a BB and a second drug is required, add DHP CCB rather than a thiazide-type diuretic to reduce the risk of developing diabetes.

partial update of NICE Clinical Guideline 18