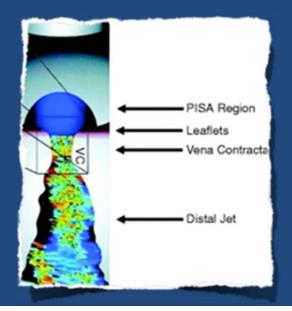
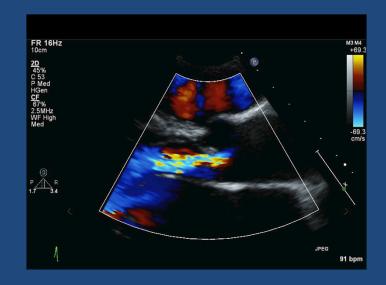
Doppler Evaluation of Valvular Regurgitation: Principles and Pitfalls

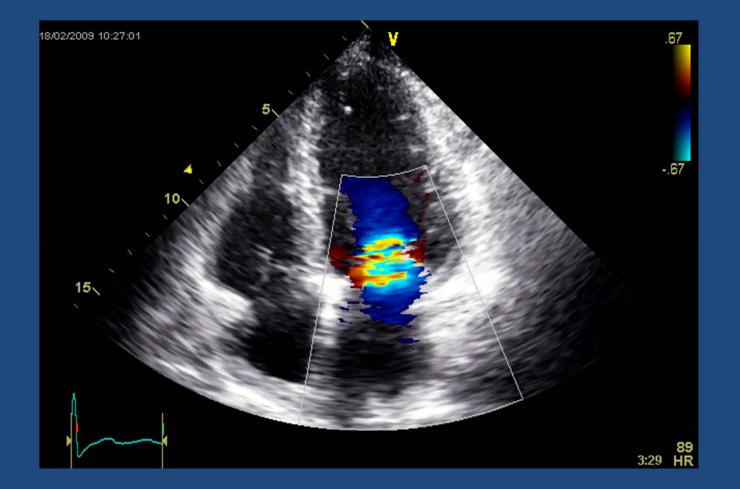
> Catholic University of Korea Chan Seok Park

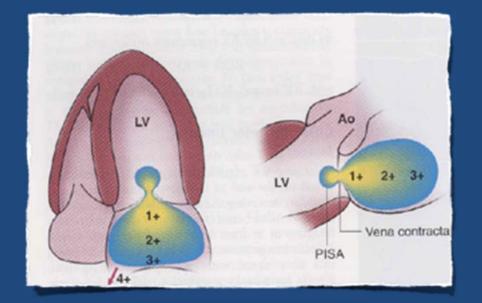

Doppler Use for Evaluation of Regurgitation

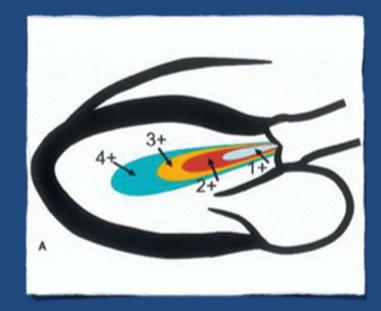

Color Doppler
Pulsed-Wave Doppler
Continuous-Wave Doppler

Color Doppler

Flow Convergence Zone
Vena Contracta
Jet Turbulence




Color Flow Doppler


Color Jet Area Method
Vena Contracta Width
Proximal Isovelocity Surface Area (PISA) or Flow Convergence Method

 Nyquist limit at the maximum for the imaging depth (60-80 cm/s)

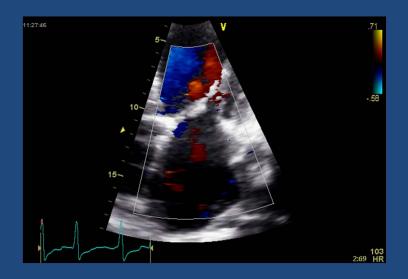
• Color gain setting just below the appearance of color noise artifacts

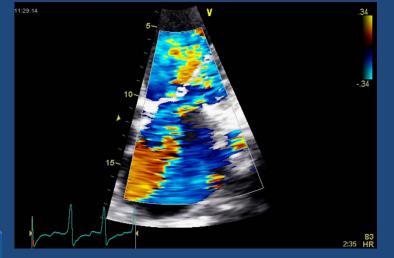
Maximum frame rate
(e.g., narrow sector, decrease depth)

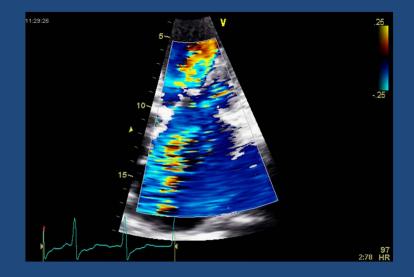
 Standardization of the instrument setup within a given laboratory

Color Jet Area Method : Benefits

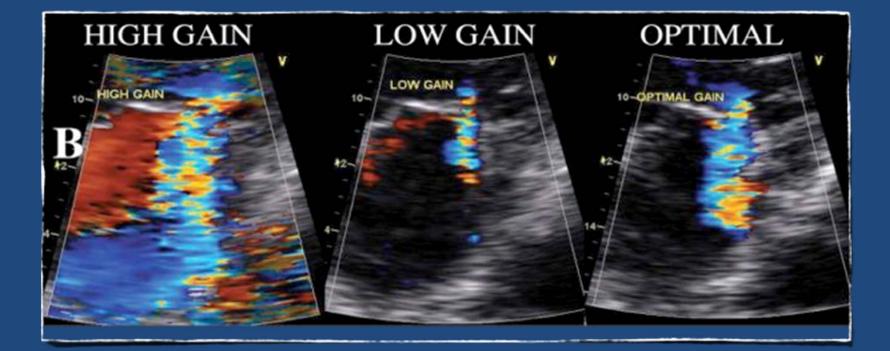
• Simple

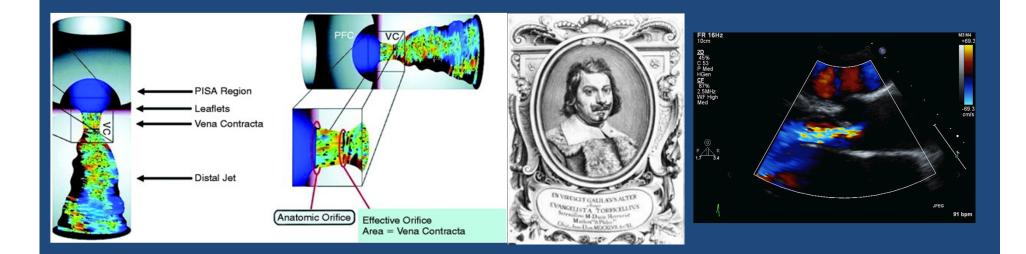

Quick Screen



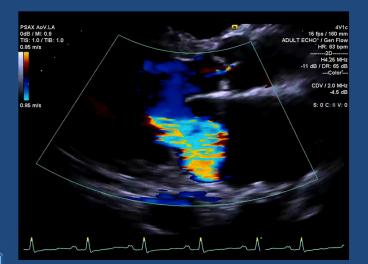

Factors that affect regurgitant jet size and shape

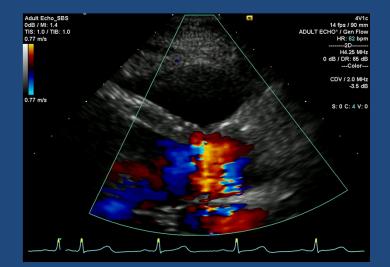
Physiologic	Technical	
Regurgitant volume	Ultrasound system gain	
Driving pressure	Pulse repetition frequency	
Size and shape of regurgitant orifice	Transducer frequency	
Receiving chamber constant	Frame rate	
Wall impingement	Image plane	
Timing relative to the cardiac cycle	Depth	
Influence on coexisting jets or flow streams	Signal strength	



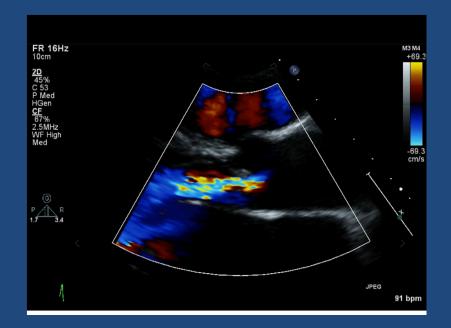


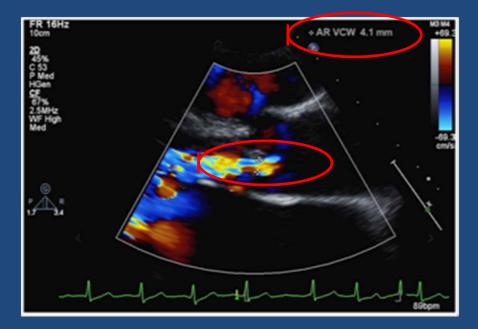
Vena Contracta Width

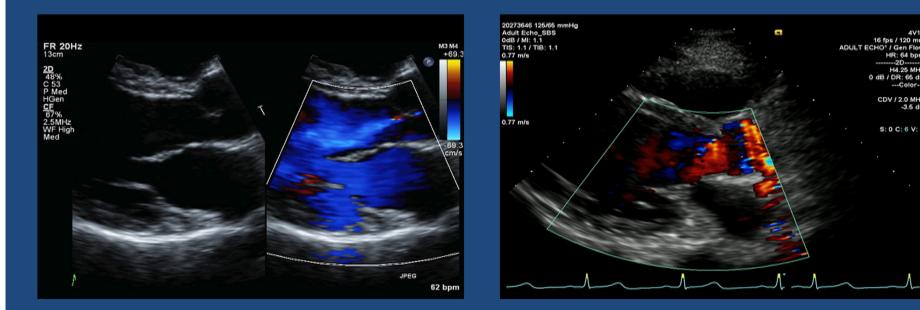

• Narrowest portion of the regurgitant jet downstream from the regurgitant orifice



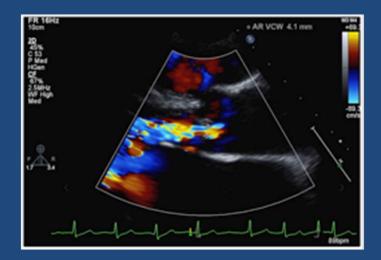
Vena Contracta Width

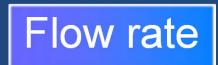

- In zoom mode
- Perpendicular to jet width
 - Narrow sector
 - Minimum depth



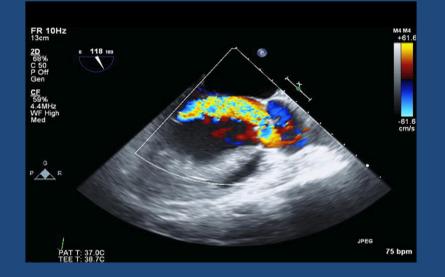


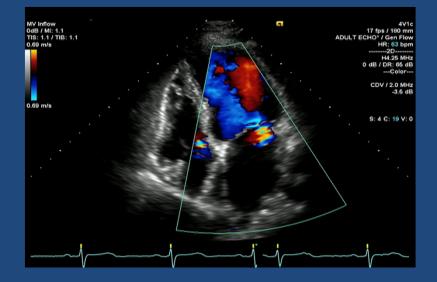
Simple, quantitative

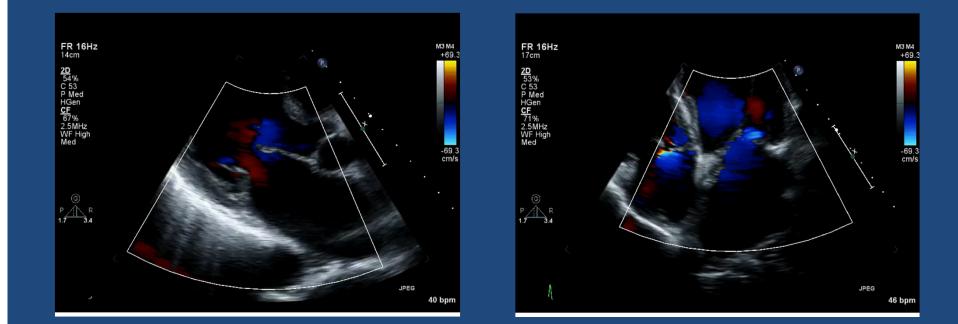


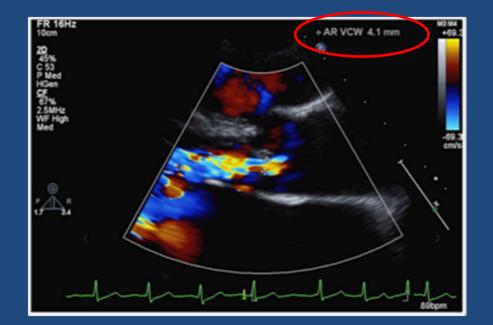


Good at identifying mild or severe regurgitation


Technical factors



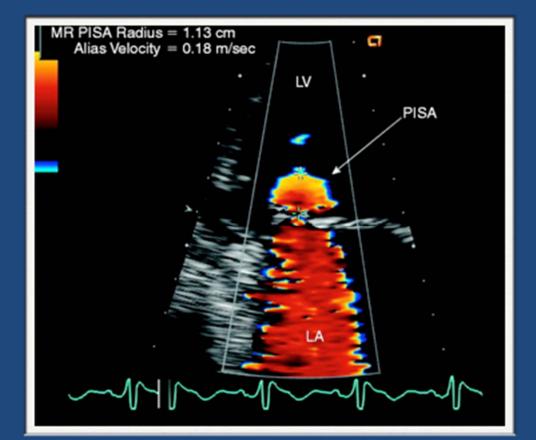



• Can be used in eccentric jet

• Not valid for multiple jets

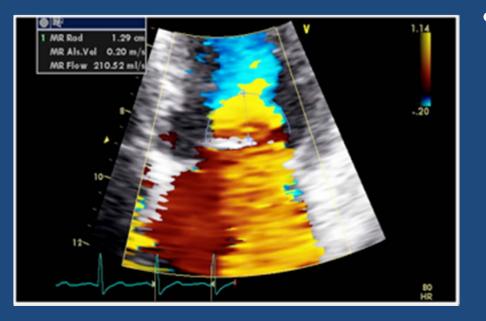
Small measurement errors lead to large % error

	Mild	Moderate	Severe
Aortic Regurgitation	< 3 mm	Intermediate	> 6 mm
Pulmonary regurgitation	Not defined	Not defined	Not defined
Mitral Regurgitation	< 3 mm	Intermediate	≥ 7 mm
Tricuspid Regurgitation	Not defined	< 7 mm	≥ 7 mm

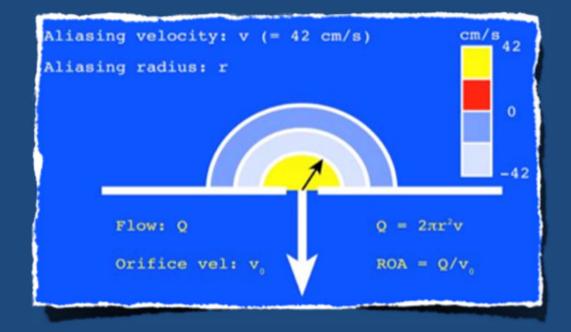


Intermediate values need confirmation

Affected by systolic changes in regurgitant flow

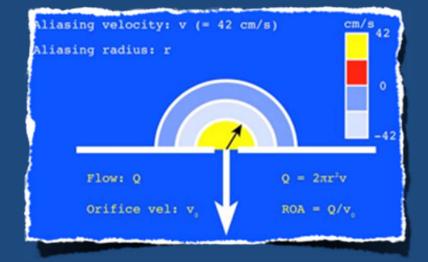


Proximal isovelocity surface area (PISA) or flow convergence method


PISA method

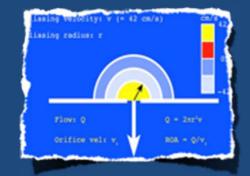
- Based on the principle of conservation of mass
 - Concentric isovelocity shells
 - Decreasing surface area and increasing velocity

PISA method



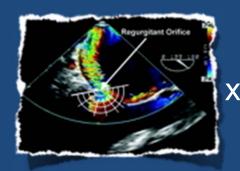
- Regurgitant flow rate = PISA x aliasing velocity
- ERO x peak MR velocity = PISA x aliasing velocity

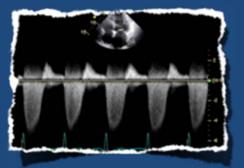
• PISA = $2\pi r^2$



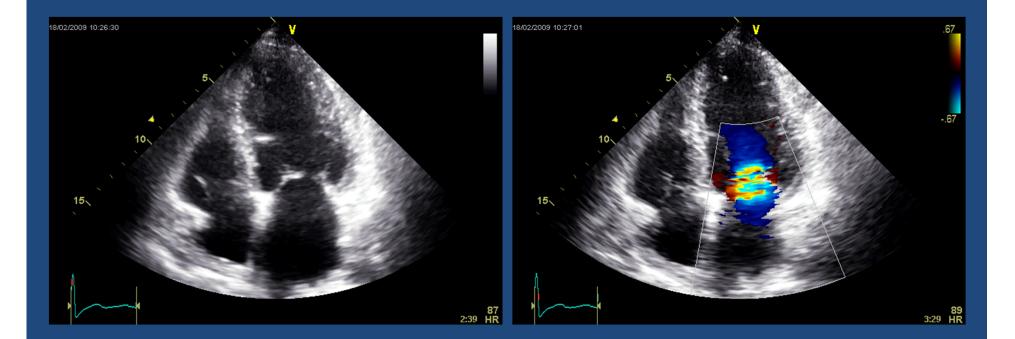
Regurgitant flow rate = PISA x aliasing velocity ERO x peak MR velocity = PISA x aliasing velocity PISA = $2\pi r^2$

• ERO = $2\pi r^2$ x aliasing velocity/ peak MR velocity



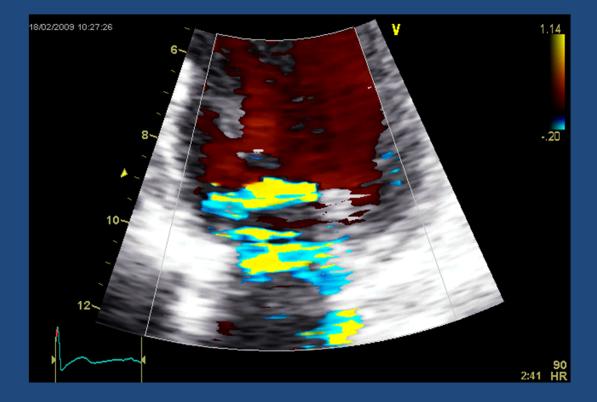

Regurgitant flow rate = PISA x aliasing velocity ERO x peak MR velocity = PISA x aliasing velocity PISA = $2\pi r^2$

• ERO = $2\pi r^2$ x aliasing velocity/ peak MR velocity


Regurgitant volume = ERO x MR VTI

PISA method: Calculation Step (I)

• Regurgitation?

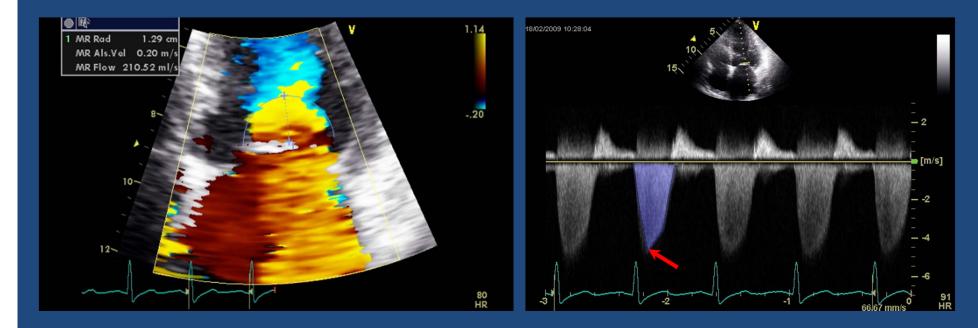

PISA method: Calculation Step (II)

Zoom and Color


PISA method: Calculation Step (III)

• Nyquist limit: 20-40 cm/s

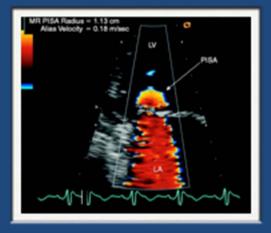
PISA method: Calculation Step (IV)



- ERO = $2\pi r^2$ x aliasing velocity/ peak MR velocity
- Regurgitant volume = ERO x MR VTI

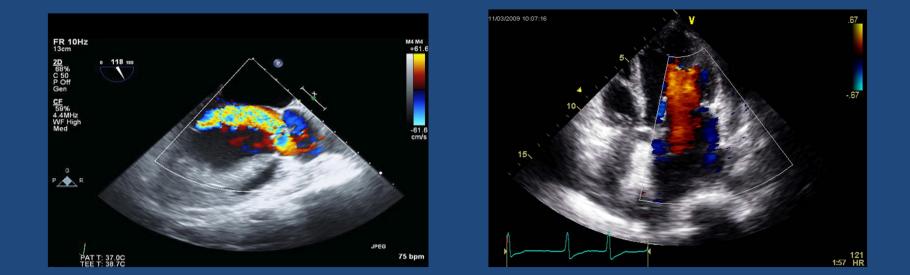
PISA method: Benefits

Quantitative



PISA method: Benefits

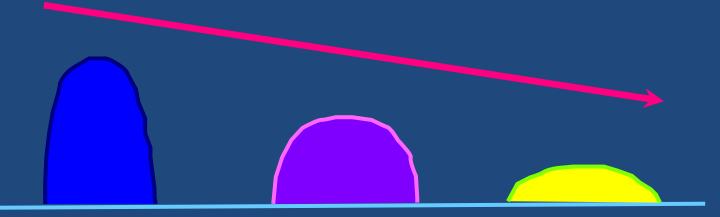
Hemodynamic Factors



Etiology

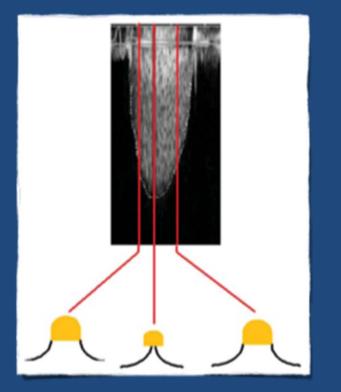
Concomitant Valve disease

PISA method: Benefits



Although less accurate, this method can be used in eccentric jet

PISA method: Limitations


Aliasing velocity

Configuration of PISA

PISA method: Limitations

• Variation in the regurgitant orifice during the cardiac cycle

PISA method: Limitations

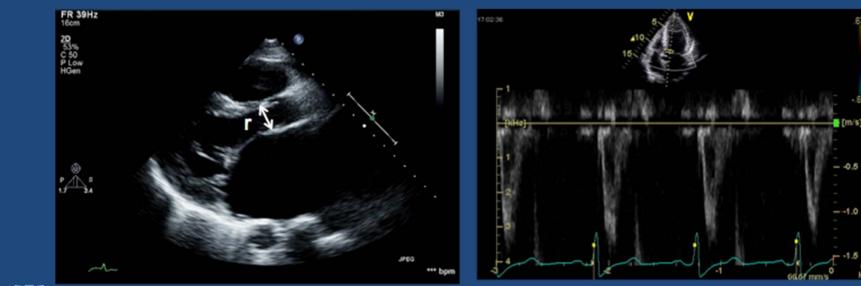
 The distortion of the isovelocity contours by encroachment of proximal structures on the flow

Total forward volume across a regurgitant orifice

• = Systemic SV + Regurgitant Volume

- Total forward volume across a regurgitant orifice
 - = Systemic SV + Regurgitant Volume

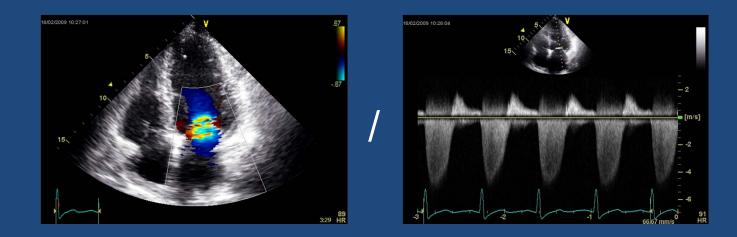
Regurgitant Volume = SV Regurgitant Valve – SV Competent Valve



- In MR
- Total SV
- -= Mitral annulus area X mitral inflow TVI -= π X a/2 X b/2 X TVI_{mitral}

In MR
Systemic SV
LVOT X LVOT TVI

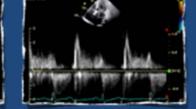
- In MR
 - Systemic SV in the presence of significant AR
 - Systemic flow could be calculated at the pulmonary annulus, although this site is often less accurate



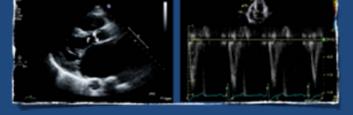
- In AR
 - -Regurgitant volume
 - Difference between LVOT SV (total) and the mitral inflow volume (competent)

• EROA

= Regurgitant volume/ TVI of the regurgitant jet velocity recorded by CW Doppler


Regurgitant fraction
Regurgitant Flow/ Total flow

Technically demanding

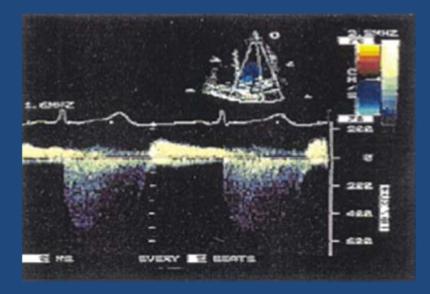


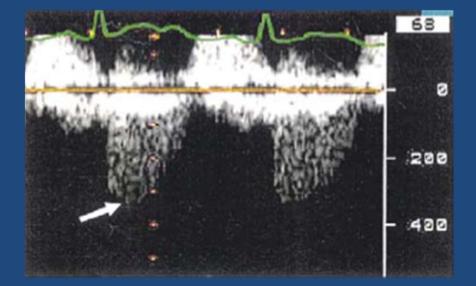
Source of many

errors

Multiple Measurement

Multistage Calculations




Optional or reserved to experienced laboratories

Other Doppler Approaches

Signal intensity of the CW

Mild MR

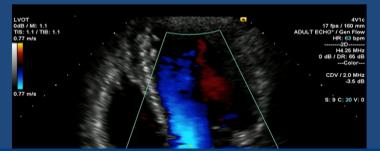
Severe MR

Doppler Evaluation of AR

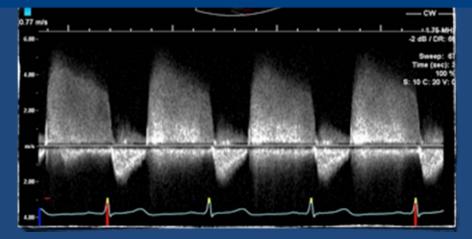
Color flow Doppler
 Color flow imaging
 Vena contracta width
 Flow convergence method

 Pulsed Doppler
 Doppler volumetric method Diastolic flow reversal

Continuous wave Doppler of the AR jet



Diastolic Flow Reversal: AR



CW Doppler of the AR Jet

Complimentary finding for the assessment of AR severity

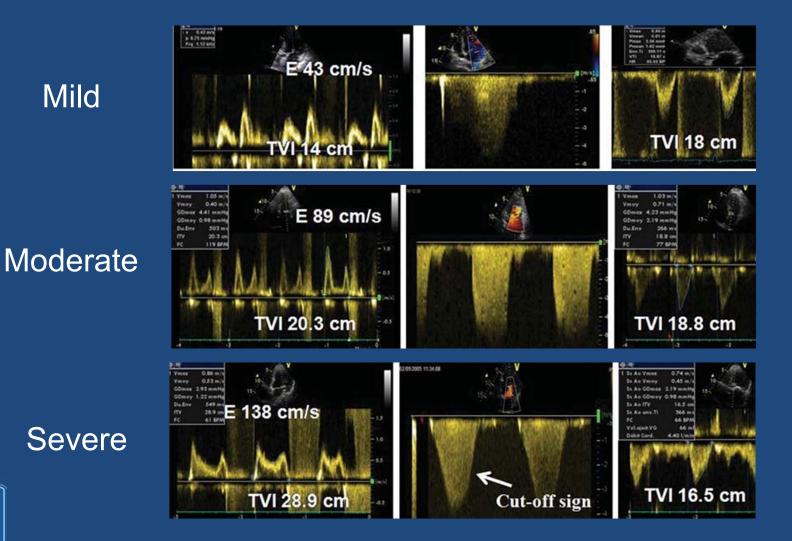
Doppler Evaluation of PR

Color flow Doppler
 Color flow imaging
 Vena contracta width
 The flow convergence method

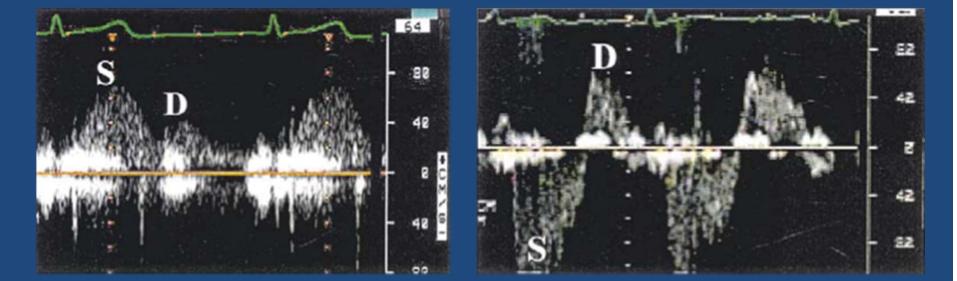
Pulsed Doppler

Continuous wave Doppler

Doppler Evaluation of MR


- Color flow Doppler Color flow imaging Vena contracta width
 Flow convergence method
 - Pulsed Doppler

Doppler volumetric method Anterograde velocity of mitral inflow : mitral to aortic time-velocity integral (TVI) ratio Pulmonary venous flow


• Continuous wave Doppler of the MR jet

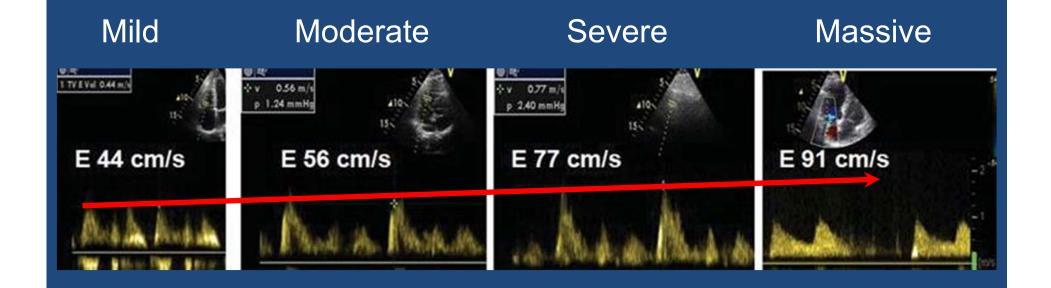
Mitral to Aortic TVI Ratio

Pulmonary Venous Flow

Mild MR

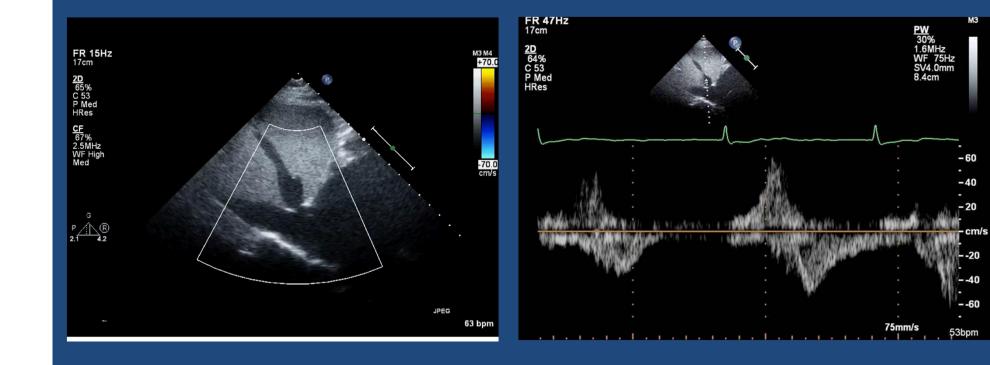
Severe MR

Doppler Evaluation of TR

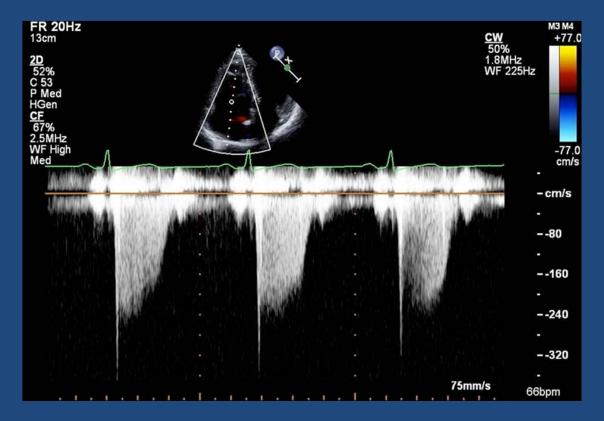

Color flow Doppler
 Color flow imaging
 Vena contracta width
 Flow convergence method

Pulsed Doppler
 Doppler volumetric method
 Anterograde velocity of tricuspid inflow
 Hepatic vein flow

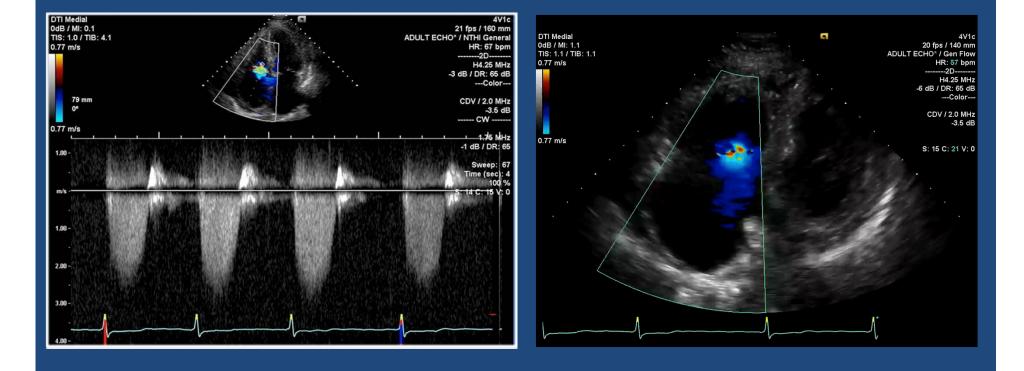
 Continuous wave Doppler of the MR jet Signal intensity and shape Pulmonary artery pressure



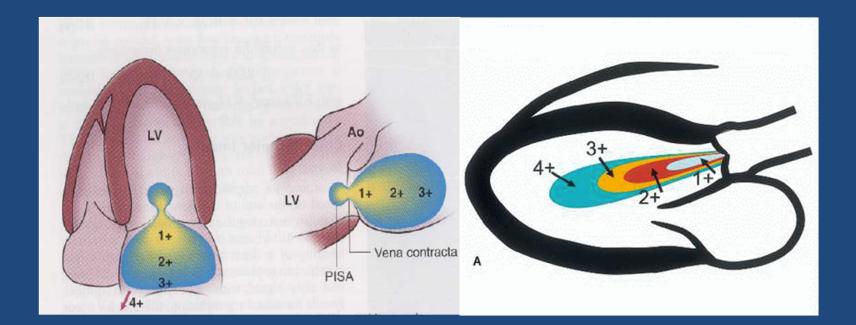
Anterograde velocity of Tricuspid inflow



Hepatic Vein Flow


Pulmonary Artery Pressure

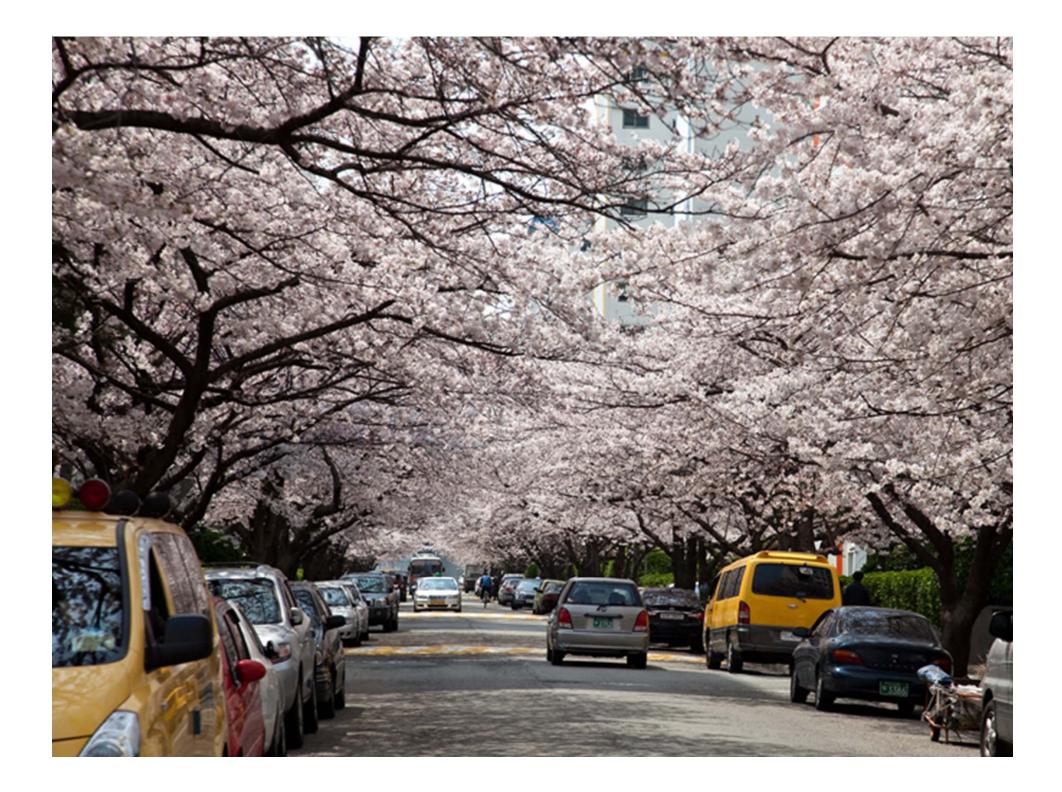
Modified Bernoulli equation



Pulmonary Artery Pressure

Estimation of Valvular Regurgitation : Recommendations by EAE

Estimation of Valvular Regurgitation : Recommendations by EAE



Estimation of Valvular Regurgitation : Recommendations by EAE

Adjunctive Parameters

Grading the Severity of AR

Parameters	Mild	Moderate	Severe
Qualitative			
Color flow AR jet width	small in central jets	Intermediate	Large in central jet. variable in eccentric jet
CW signal of AR jet	Incomplete/faint	Dense	Dense
Diastolic flow reversal in descending aorta	Brief, protodiastolic flow reversal	Intermediate	Holodiastolic flow reversal (end-diastolic velocity > 20cm/s)
Semi-quantitative			
VC width (mm)	< 3	Intermediate	> 6
PHT (ms)	> 500	Intermediate	< 200
Quantitative			
EROA (mm ²)	< 10	10-19;20-29	≥ 30
R vol (mL)	< 30	30-44;45-59	≥ 60

Doppler for the evaluation of AR: Advantages and Limitations

	Advantages	Limitations
Color flow AR jet width and area	 Ease of use Evaluates the spatial orientation of AR jet Quick screening for AR 	 Influenced by technical and hemodynamic factors Inaccurate for AR jet Expands unpredictably below the orifice
VC width	 Relatively quick and easy Relatively independent of hemodynamic and instrumentation factors Not affected by other valve leak Good for extremes AR: mild vs. severe Can be used in eccentric jet 	 Not valid for multiple jets Small values: small measurement errors leads to large % error Intermediate values need confirmation Affected by systolic changes in regurgitant flow

Doppler for the evaluation of AR: Advantages and Limitations

	Advantages	Limitations
PISA method	•Can be used in eccentric jet •Quantitative: estimate lesion severity (EROA) and volume overload (R vol)	 PISA shape affected by the aliasing velocity in case of non-circular orifice by systolic changes in regurgitant flow by adjacent structures (flow constrainment) PISA is more a hemi-ellipse Error in PISA radius measurement are squared Inter-observer variability Not valid for multiple jets Feasibility limited by aortic valve calcifications

Doppler for the evaluation of AR: Advantages and Limitations

	Advantages	Limitations
Doppler volumetric method	 Quantitative: estimate lesion severity (ERO) and volume overload Valid in multiple jets 	 Time consuming Requires multiple measurements: source of errors Not applicable in case of significant MR (use the pulmonic site)
CW AR jet profile	Simple, easily available	 Qualitative, complementary finding Complete signal difficult to obtain in eccentric jet
Pressure half-time	Simple	Affected by LV compliance, blood pressure, acuity of AR
Diastolic flow reversal in descending aorta	Simple	 Affected by sample volume location and acuity of AR Affected by aortic compliance Brief velocity reversal is normal Cut-of validated for distal aortic arch

Grading the Severity of PR

	Mild	Moderate	Severe
Qualitative			
Color flow PR jet width	Small, usually < 10 mm in length with a narrow origin	Intermediate	Large, with a wide origin; maybe brief in duration
CW signal of PR jet	Faint/slow deceleration	Dense/variable	Dense/steep deceleration, early termination of diastolic flow
Pulmonic vs Aortic flow by PW	Normal or slightly increased	Intermediate	Greatly increased
Semi-quantitative			
VC width (mm)	Not defined	Not defined	Not defined
Quantitative			
EROA (mm ²)	Not defined	Not defined	Not defined
R vol (mL)	Not defined	Not defined	Not defined

Doppler for the evaluation of PR: Advantages and Limitations

	Advantages	Limitations
Color flow PR jet	 Ease of use Evaluates the spatial orientation of PR jet Quick screening for mild vs. severe PR 	Influenced by technical and hemodynamic factors
VC width	 Possible if the pulmonic valve is well visualized Relatively independent of hemodynamic and instrumentation factors Not affected by other valve leak Normally good as for the other valves 	 Difficult to perform in the majority of patients Lacks published data
PISA method	QuantitativeNormally good as for the other valves	 Difficult to perform in the majority of patients Lacks published data
CW PR jet profile	Simple, easily available	Qualitative, complementary finding
AT HOLIC		gaanaave, complementary intellig

Grading the Severity of MR

	Mild	Moderate	Severe
Qualitative			
Color flow MR jet	Small, central	Intermediate	Very large central jet adhering. swirling and reaching the posterior wall of the LA
Flow convergence zone	No or small	Intermediate	Large
CW signal of MR jet	Faint/Parabolic	Dense/Parabolic	Dense/Triangular
Semi-quantitative			
VC width (mm)	< 3	Intermediate	≥ 7 (> 8 for biplane)
Pulmonary vein flow	Systolic dominance	Systolic blunting	Systolic flow reversal
Mitral inflow	A wave dominant	Variable	E wave dominant (> 1.5 cm/s)
TVI mit/TVI Ao	< 1	Intermediate	> 1.4
Quantitative			
EROA (mm ²)	< 20	20-29; 30-39	≥ 40
R vol (mL)	<30	30-44; 45-59	≥ 60

Doppler for the evaluation of MR: Advantages and Limitations

	Advantages	Limitations
Color flow MR jet	 Ease of use Evaluates the spatial orientation of MR jet Good screening test for mild vs. severe MR 	 Can be inaccurate for estimation of MR severity Influenced by technical and hemodynamic factors Underestimates eccentric jet adhering the LA wall (Coanda effect)
VC width	 Relatively quick and easy Relatively independent of hemodynamic and instrumentation factors Not affected by other valve leak Good for extremes MR: mild vs. severe Can be used in eccentric jet 	 Not valid for multiple jets Small values: small measurement errors leads to large % error Intermediate values need confirmation Affected by systolic changes in regurgitant flow

Doppler for the evaluation of MR: Advantages and Limitations

	Advantages	Limitations
PISA method	 Can be used in eccentric jet Not affected by the etiology of MR or other valve leak Quantitative: estimate lesion severity (EROA) and volume overload (R vol) Flow convergence at 50 cm/s alerts to significant MR 	 PISA shape affected by the aliasing velocity in case of non-circular orifice by systolic changes in regurgitant flow by adjacent structures (flow constrainment) PISA is more a hemi-ellipse Error in PISA radius measurement are squared Inter-observer variability Not valid for multiple jets
Doppler volumetric method	 Quantitative: estimate lesion severity (ERO) and volume overload Valid in multiple jets 	 Time consuming Requires multiple measurements: source of errors Not applicable in case of significant AR (use the pulmonic site) Difficulties in assessing mitral annulus diameter and mitral inflow in case of calcific mitral valve/annulus Affected by sample volume location (mitral flow)

Doppler for the evaluation of MR: Advantages and Limitations

	Advantages	Limitations
CW MR jet profile	Simple, easy available	 Qualitative, Complementary finding Complete signal difficult to obtain in eccentric jet
Pulmonary vein flow	•Simple •Systolic flow reversal is specific for severe MR	 Affected by LA pressure, atrial fibrillation Not accurate if MR jet directed into sampled vein
Peak E velocity	 Simple, easy available Dominant A-wave almost excludes severe MR 	 Affected by LA pressure, atrial fibrillation, LV relaxation Complementary finding

Grading the Severity of TR

	Mild	Moderate	Severe
Qualitative			
Color flow of TR jet	Small, central	Intermediate	Very large central or eccentric impinging jet
CW signal of TR jet	Faint/Parabolic	Dense/Parabolic	Dense/Triangular with early peaking (peak < 2 m/s in massive TR)
Semi-quantitative			
VC width (mm)	Not defined	< 7	≥7
PISA radius	≤ 5	6-9	> 9
Hepatic vein flow	Systolic dominance	Systolic blunting	Systolic flow reversal
Tricuspid inflow	Normal	Normal	E wave dominant (≥ 1 cm/s)
Quantitative			
EROA (mm ²)	Not defined	Not defined	≥ 40
R Vol (mL)	Not defined	Normal	≥ 45

Doppler for the evaluation of TR: Advantages and Limitations

	Advantages	Limitations
Color flow TR jet	 Ease of use Evaluates the spatial orientation of TR jet Good screening for mild vs. severe TR 	 Can be inaccurate for estimation of TR severity Influenced by technical and hemodynamic factors Underestimates eccentric jet adhering to the RA wall (Coanda effect)
VC width	 Relatively quick and easy Relatively independent of hemodynamic and instrumentation factors Not affected by other valve leak Good for extremes TR: mild vs. severe Can be used in eccentric jet 	 Not valid for multiple jets Small values: small measurement errors leads to large % error Intermediate values need confirmation Affected by systolic changes in regurgitant flow

Doppler for the evaluation of TR: Advantages and Limitations

	Advantages	Limitations
PISA method	 Can be used in eccentric jet Not affected by the etiology of TR or other valve leak Quantitative: estimate lesion severity (EROA) and volume overload (R vol) Large flow convergence at 28 cm/s alerts to significant TR 	 PISA shape affected by the aliasing velocity -in case of non-circular orifice -by systolic changes in regurgitant flow -by adjacent structures (flow constrainment) •Error in PISA radius measurement are squared •Inter-observer variability •Validated in only few studies
CW TR jet profile	Simple, easily available	 Qualitative, Complementary finding Complete signal difficult to obtain in eccentric jet
Hepatic vein flow	SimpleSystolic flow reversal is specific for severe TR	Affected by RA pressure, atrial fibrillation
Peak E velocity	Simple, easily availableUsually increased in severe TR	 Affected by RA pressure, atrial fibrillation, RV relaxation Complementary finding

Doppler Evaluation of the Valvular Regurgitation

