## Rationale for the use of Single Pill Combination

Yong-Jin Kim, MD
Seoul National University Hospital

#### **Unmet Need of Hypertension Treatment**

#### **Hypertension - # 1 Risk Factor for Global Mortality**



#### **Hypertension – High Prevalence**

Hypertension affects approximately 1 billion people worldwide

Number of adults with hypertension is estimated to 1 60% from 2000 to 2025

#### **Hypertension – CV Mortality Risk**



\*Individuals aged 40 to 69 years, starting at blood pressure 115/75 mm Hg Chobanian AV et al. *JAMA*. 2003;289:2560. Lewington S et al. *Lancet*. 2002;360:1903

#### **Blood Pressure and Risk of Cardiovascular Event**



- Meta-analysis of 61 prospective, observational studies
- 1 million adults
- 12.7 million person-years

### Blood Pressure Goal ESH—ESC & JNC 7 Guidelines

|                                                 | JNC 7 <sup>1</sup> | ESH-ESC <sup>2</sup> |  |
|-------------------------------------------------|--------------------|----------------------|--|
| Type of hypertension                            | BP goal (mmHg)     | BP goal (mmHg)       |  |
| Uncomplicated                                   | <140/90            | 130–139/80–85        |  |
| Complicated                                     |                    |                      |  |
| Diabetes mellitus                               | <130/80            | 130–139/80–85        |  |
| Kidney disease                                  | <130/80*           | 130–139/80–85        |  |
| Other high risk (stroke, myocardial infarction) | <130/80            | 130–139/80–85        |  |

BP = blood pressure; ESH = European Society of Hypertension;

ESC = European Society of Cardiology;

JNC = Joint National Committee

<sup>\*</sup>Lower if proteinuria is >1 g/day

### Global risk assessment Promotes intensified BP control

| Blood pressure (mmHg)               |                                                       |                                                       |                                                                                      |                                                                                     |                                                       |  |
|-------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| Other risk factors<br>OD or disease | Normal<br>SBP 120-129<br>or<br>DBP 80-84              | High normal<br>SBP 130-139<br>or<br>DBP 85-89         | Grade 1 HT<br>SBP 140-159<br>or<br>DBP 90-99                                         | Grade 2 HT<br>SBP 160-179<br>or<br>DBP 100-109                                      | Grade 3 HT<br>SBP≥180<br>or<br>DBP≥110                |  |
| No other risk factors               | No BP intervention                                    | No BP intervention                                    | Lifestyle changes<br>for several months<br>then drug treatment<br>if BP uncontrolled | Lifestyle changes<br>for several weeks<br>then drug treatment<br>if BP uncontrolled | Lifestyle changes<br>+<br>Immediate drug<br>treatment |  |
| 1–2 risk factors                    | Lifestyle changes                                     | Lifestyle changes                                     | Lifestyle changes<br>for several weeks<br>then drug treatment<br>if BP uncontrolled  | Lifestyle changes<br>for several weeks<br>then drug treatment<br>if BP uncontrolled | Lifestyle changes<br>+<br>Immediate drug<br>treatment |  |
| ≥3 risk factors, MS<br>or OD        | Lifestyle changes                                     | Lifestyle changes and consider drug treatment         | Lifestyle changes                                                                    | Lifestyle changes                                                                   | Lifestyle changes<br>+                                |  |
| Diabetes                            | Lifestyle changes                                     | Lifestyle changes +<br>Drug treatment                 | Drug treatment                                                                       | Drug treatment                                                                      | Immediate drug<br>treatment                           |  |
| Established CV or renal disease     | Lifestyle changes<br>+<br>Immediate drug<br>treatment | Lifestyle changes<br>+<br>Immediate drug<br>treatment | Lifestyle changes<br>+<br>Immediate drug<br>treatment                                | Lifestyle changes<br>+<br>Immediate drug<br>treatment                               | Lifestyle changes<br>+<br>Immediate drug<br>treatment |  |

•Patients with organ damage, established CVD, DM, Metabolic syndrome or ≥ 3 other risk factors need immediate treatment

### BP Control Rates in Europe *Majorities do not reach the goal*



<sup>\*</sup>Treated for hypertension; #BP goal <140/90 mmHg BP = blood pressure

#### **BP Control Rates in Asia**



#### BP uncontrolled





their hypertension)

Why do we need

**Multiple Mechanism Therapy:** 

**Efficacy** 

### Limitations of Treating with Single Mechanism of Action

- Antihypertensive agents with a single MoA were inadequate to achieve a diastolic BP <95 mmHg in 40–60% of hypertensive patients¹
- Because hypertension is a multifactorial disease, in most cases at least two antihypertensive agents are needed for patients to achieve BP goal<sup>2</sup>
- As an estimate, 1/3 of patients with hypertension require 2 drugs to achieve BP control\* and 1/3 of patients will require 3 or more agents to achieve BP control³

### Multiple Antihypertensive Agents Needed to Reach BP Goal in Clinical Trials



# Up to 8 out of 10 patients need multiple medications to help reach blood pressure treatment goals<sup>1,2</sup>

#### Multiple-mechanism Therapy: Potential Efficacy Benefits

- Components with a different mechanism of action interact on complementary pathways of BP control<sup>1</sup>
- Each component can potentially neutralize counterregulatory mechanisms
- Multiple-mechanism therapy may result in BP reductions that are additive<sup>2</sup>

### Limitations of Treating with Single Mechanism of Action



- Renin-angiotensin system
- Sympathetic nervous system
- Total body sodium

### Adding an Antihypertensive Agent More Effective Than Titrating

### combination therapy vs monotherapy in over 11,000 patients from 42 trials



### Adding an Antihypertensive Agent *More Effective Than Titrating*

'The extra blood pressure reduction from combining drugs from 2 different classes is approximately 5 times greater than doubling the dose of 1 drug'

Conclusions from a meta-analysis comparing combination antihypertensive therapy with monotherapy in over 11,000 patients from 42 trials

### ACCOMPLISH Study Design



Free add-on

### ACCOMPLISH Study Target achieved with Multiple Mechanism Therapy



<sup>\*</sup>Control defined as BP <140/90 mmHg

ACCOMPLISH = Avoiding Cardiovascular events through COMbination therapy in Patients Living with Systolic Hypertension; HCTZ = hydrochlorothiazide

<sup>&</sup>lt;sup>‡</sup>Values calculated from mean BP after titration and mean BP control rate over the duration of the study

Why do we need

Multiple Mechanism Therapy:

**Compliance & Prognosis** 

### Highly Compliant Patients More Likely to Attain BP Goal

Patients with BP control\* (%)





Compliance (measured using medication possession ratio)

Bramley et al. J Manag Care Pharm 2006;12:239-45

<sup>\*&</sup>lt;140/90 mmHg or <130/85 mmHg for patients with diabetes

#### Non-persistence with Anti-HT Therapy Increased Risk of MI and Stroke

77,193 new users of antihypertensive treatment



<sup>\*</sup>Adjusted for gender, age, type of prescriber, use of cardiovascular co-medication, initial antihypertensive therapy, number of different antihypertensive classes during the first 2 years of therapy

### Adherence to Anti-HT and CV Morbidity Among 18,806 Newly Diagnosed

| Adherence Within 6 mo After Diagnosis | HR* (95% CI)     | Р       |
|---------------------------------------|------------------|---------|
| Model 1†                              |                  |         |
| Low (PDC <40%)                        | 1.00             | <0.001§ |
| Intermediate (PDC, 40% to 79%)        | 0.87 (0.73-1.03) | 0.117   |
| High (PDC ≥80%)                       | 0.50 (0.35-0.69) | < 0.001 |
| Model 2†                              |                  |         |
| Low (PDC <40%)                        | 1.00             | <0.001§ |
| Intermediate (PDC, 40% to 79%)        | 0.86 (0.71-1.03) | 0.109   |
| High (PDC ≥80%)                       | 0.62 (0.40-0.96) | 0.032   |

Circulation. 2009 ;120:1598-1605

### Better Compliance with Antihypertensive Lower Risk of Hospitalization



### Compliance Decreases as the Number of Medications Increases

Number of pre-existing prescription medications

Unadjusted odds ratio for compliance (>80%) to both antihypertensive therapy and LLT (95% CI; p value)



Retrospective cohort study of MCO population. N=8,406 patients with hypertension who added antihypertensive therapy and LLT to existing prescription medications within a 90-day period. Compliance to concomitant therapy: sufficient antihypertensive and LL prescription medications to cover ≥80% of days per 91-day period

CI=confidence interval; LLT = lipid-lowering therapy

### Improved Compliance with Single-pill Combination Vs. Free-combination Therapy



Medication possession ratio (MPR)<sup>†</sup>

### Multiple-mechanism Therapy: Potential Tolerability Benefits

#### **Multiple-mechanism therapy**

- improved tolerability profile 1,2
- Components of multiple-mechanism therapy can be given at lower dosages to achieve BP goal than those required as monotherapy: therefore better tolerated<sup>1,2</sup>
- Compound-specific adverse events can be attenuated <sup>1,2</sup>
  - Renin-angiotensin-aldosterone system blockers may attenuate the edema caused by ca<sup>++</sup> channel blockers

### Multiple-mechanism Therapy: Potential Tolerability Benefits

#### Lower dose Multiple-mechanism therapy

- improved tolerability profile components<sup>1,2</sup>





### Multiple-mechanism Therapy: Reducing Adverse Effects

#### **Combination Therapy Meta-Analysis**



\*P<0.03 combination therapy vs expected additive effect

Why do we need

Multiple Mechanism Therapy:

**Economics** 

### Better Compliance with Anti-HT Therapy Decrease in Medical Costs



#### Patients with Fixed dose Combinations: Use Less Resource



### **Multiple Mechanism Therapy:**

**Treatment Guidelines** 

### Initiating Combination Therapy Early in Patients with Stage 2 Hypertension or High Risk

■ JNC 7 guidelines state<sup>1</sup>:

'When BP is more than 20 mmHg above systolic goal or 10 mmHg above diastolic goal, consideration should be given to initiate therapy with 2 drugs...'

■ ESH/ESC guidelines state<sup>2</sup>:

'The combination of two antihypertensive drugs may offer advantages also for treatment initiation, particularly in patients at high cardiovascular risk in which early BP control may be desirable.'

### European Guidelines now Recommend Use of Single-pill Combination Therapy

■2009 European guidelines

'Whenever possible, use of fixed dose (or single pill) combinations should be preferred, because simplification of treatment carries advantages for compliance to treatment'

### Fixed dose combination Advantages: Vs. Free Combinations

|                                        | FDC | Free Combination |
|----------------------------------------|-----|------------------|
| Simplicity of treatment <sup>1,2</sup> | +   | <del>_</del>     |
| Adherence <sup>1,2</sup>               | +   | <del>_</del>     |
| Efficacy <sup>2</sup>                  | +   | +                |
| Tolerability <sup>2</sup>              | +*  | <del>_</del>     |
| Price <sup>2</sup>                     | +   | <del>_</del>     |
| Flexibility <sup>2</sup>               | +** | ++               |

<sup>\*</sup>Lower doses generally used in FDCs

<sup>\*\*</sup>An increasing number of FDCs are becoming available with a range of doses

<sup>+ =</sup> potential advantage

### Multiple Mechanism Therapy:

Korean Situation

### HTN patients by severity degree

### > 40 % of patients are suffered from stage 2 or 3

Treated HTN-patients by severity degree (in % of patients)



Data Source) Global CV HTN Tracker study (Nov, 2008)

### Current treatment pattern: Many patients need more than 2 agents



<sup>\*</sup>Combination Therapy = Free combination + SPC (Single Pill Combination)

Multiple Mechanism Therapy: Which Single-pill Combinations?

### 2007 ESH/ESC Guidelines:

#### **Possible Combinations**





### A/CD rule



### ESH—ESC Recommendations for Combining BP-lowering Drugs and Availability as Single-pill Combinations<sup>1</sup>



Available as a single-pill combination

Less frequently used/combination used as necessary

ACEI = angiotensin-converting enzyme inhibitor; ARB = angiotensin receptor blocker; CCB = calcium channel blocker

# Which Single-pill Combinations? RAAS Blocker Plus Diuretic?

### **HCTZ Has Been Widely Studied in Hypertension**

- First-line recommendation in uncomplicated HT by JNC-7<sup>1</sup>
- Useful for enhancing efficacy in multi-drug regimens, including in combination with ARBs and CCBs<sup>1</sup>
- The ALLHAT Study: supporting the use of thiazide in HT <sup>2</sup>
- HCTZ has been shown to enhance antihypertensive efficacy when combined with valsartan<sup>3</sup>
  - More than 4,000 patients have been included in the valsartan/HCTZ groups<sup>3</sup>
  - HCTZ resulted in additive decreases in systolic and diastolic BP when combined with valsartan<sup>3</sup>

## ARB/HCTZ Provides Systolic BP Reductions Across HT Severities

6-week, double-blind, multicentre, forced-titration study

#### Category of baseline MSSBP (mmHg)



\*Valsartan 160 mg force-titrated to 320 mg at Week 2 and valsartan/HCTZ 160/12.5 mg force-titrated to 160/25 mg and 320/25 mg at Weeks 2 and 4, respectively; BP = blood pressure; DBP = diastolic BP; SBP = systolic BP; MSSBP = mean sitting SBP; LOCF = last observation carried forward; C-DITT = Co-Valsartan Initial Therapy Trial

# Which Single-pill Combinations? RAAS Blocker Plus CCB?

### Amlodipine/Valsartan Powerful BP Reductions Across HT Severities



¶DBP 90–99 mmHg, SBP 140–159 mmHg ‡DBP ≥100 mmHg, SBP ≥160 mmHg BP = blood pressure; DBP = diastolic BP; SBP = systolic BP; MSSBP = mean sitting SBP

#### **ACCOMPLISH:**

### Superior CV Outcomes with RAAS Blocker/Amlodipine



ACCOMPLISH = Avoiding Cardiovascular events through COMbination therapy in Patients LIving with Systolic Hypertension; CV = cardiovascular; RAAS = renin-angiotensin-aldosterone system; HCTZ = hydrochlorothiazide

## Amlodipine Wealth of Cardiovascular Outcomes Data

| PREVENT¹ 825 coronary heart disease (CAD) patients (≥30%): Multicentre, randomized, placebo controlled              |                                                                                                                                                             |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                     | 35%           hospitalization for HF + angina  43%         revascularization procedures                                                                     |  |
| CAMELOT <sup>2</sup>                                                                                                | Primary outcome: 31% ♥ in CV events vs placebo                                                                                                              |  |
| 1,991 CAD patients (>20%): Double-blind, randomized study vs placebo and enalapril 20 mg                            | <ul><li>42%        hospitalization for angina</li><li>27%       coronary revascularization</li></ul>                                                        |  |
| ASCOT-BPLA/CAFE <sup>3,4</sup> 19,257 hypertensive patients: Multicentre, randomized, prospective study vs atenolol | Primary outcome: 10% ♥ in non-fatal MI & fatal CHD  16% ♥ total CV events and procedures  30% ♥ new-onset diabetes  23% ♥ stroke  11% ♥ all-cause mortality |  |
| ALLHAT <sup>5</sup> 18,102 hypertensive patients: Randomized, prospective study vs lisinopril                       | Primary outcome: No difference in composite of fatal CHD + non-fatal MI vs lisinopril 6%                                                                    |  |

#### **ARB**

### Wealth of Cardiovascular Outcomes Data

| VALUE <sup>1</sup> 15,245 high-risk hypertension patients; Double-blind, randomized study vs amlodipine                                                                                                                                                                                                     | No difference in composite of cardiac mortality and morbidity (primary) 23%                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| VALIANT <sup>2</sup> 14,703 post-myocardial infarction (MI) patients; Double- blind, randomized study vs captopril and vs captopril + valsartan                                                                                                                                                             | No difference vs captopril in all-cause mortality (primary) (valsartan is as effective as standard of care)                                              |
| Val-HeFT <sup>3–5</sup> 5,010 heart failure (HF) II–IV patients; Double-blind, randomized study vs placebo                                                                                                                                                                                                  | 13%                                                                                                                                                      |
| JIKEI HEART <sup>6</sup> 3,081 Japanese patients on conventional treatment for hypertension, coronary heart disease (CHD), HF or combination of these; Multicentre, randomized, controlled trial comparing addition of valsartan vs non-angiotensin Type 2 receptor blocker (ARB) to conventional treatment | 39%   composite CV mortality and morbidity  40%   Stroke/transient ischemic attack (TIA)  47%   Hospitalization for HF  65%   Hospitalization for angina |
| KYOTO HEART <sup>7</sup> 3,031 Japanese patients on conventional treatment for hypertension and high CV risk; Multicentre PROBE trial comparing addition of valsartan vs non-ARB to conventional treatment                                                                                                  | 45%   composite CV mortality and morbidity  45%   Stroke/transient ischemic attack (TIA)  49%   Angina pectoris  33%   New-onset diabetes                |

### **Summary**

- A good proportion of patients require 2 or more antihypertensive medications to reach BP goal<sup>1-3</sup>, especially in the era of global cardiovascular risk management.
- When combination therapy is required,
  - the use of Fixed dose combinations to improve adherence<sup>4</sup>
- When combination therapy is required, most guidelines recommend (when there are no compelling indications)
  - For dual: a combination of a RAAS blocker and a diuretic, or a RAAS blocker and a calcium channel blocker<sup>4</sup>