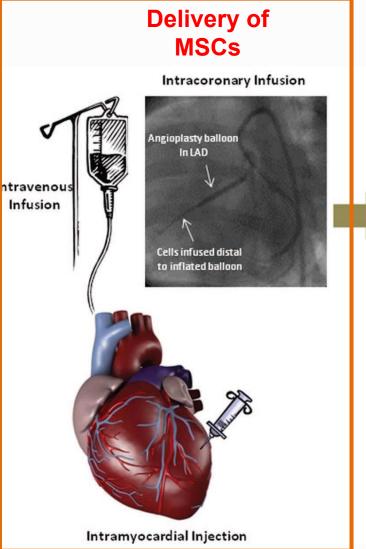


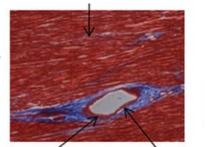
Stem Cell Therapy in AMI

The optimal delivery strategy for stem cells


안영근

🚱 Chonnam Nat. Univ. Hosp.

Cardiac Regeneration : Stem Cell


Potentially reparing myocardium

Mechanisms of action

Engraftment and

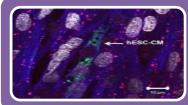
differentiation Cardiomyocytes

Endothelial cells Smooth muscle cells

- Angiogenesis
- Paracrine signaling
- Anti-inflammatory effects
- Activate endogenous
- cardiac stem cells

Functional and Structural Effects

- Reverse remodeling in chronic ischemic CMP
- Prevention of
 - remodeling after AMI
- Scar size reduction
- Increase tissue perfusion
- Improved regional


contractility

Increased ejection
 fraction

Adam R, et al. Circ Res. 2011;109:9923 -940

Engraftment

Procedural safety

Extracardiac retention of stem cells

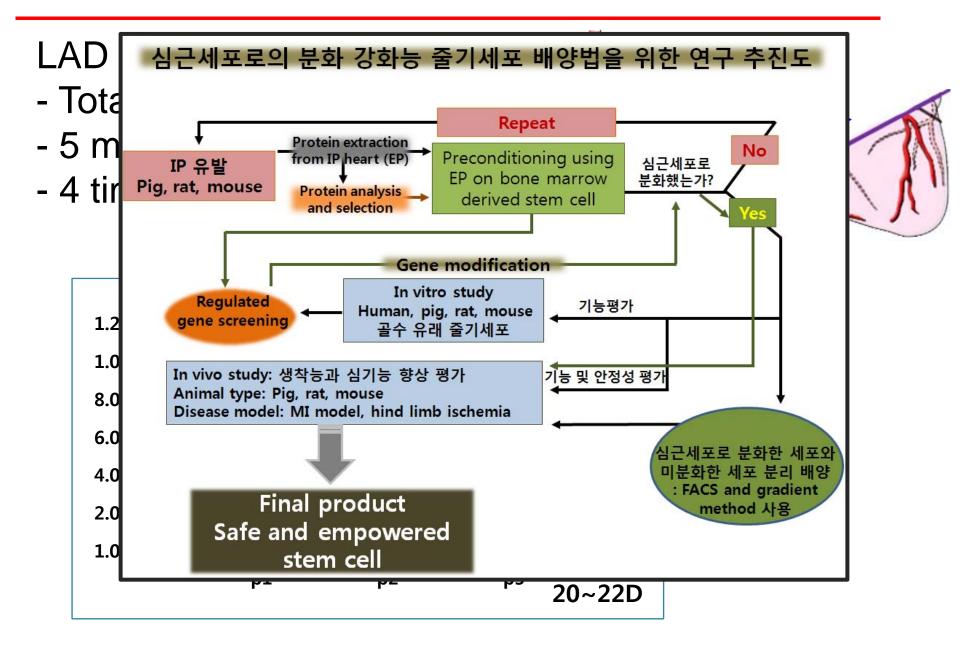
Improvement of heart function

Which Route is Most Effective? 응전남대학교병원 Methods of delivery will affect the outcome of stem cell therapies, perhaps significantly.

Injection Timing

Front Biosci. 2009 Jan 1;14:2845-56.

TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium.


<u>Kim YS</u>, <u>Park HJ</u>, <u>Hong MH</u>, <u>Kang PM</u>, <u>Morgan JP</u>, <u>Jeong MH</u>, <u>Cho JG</u>, <u>Park JC</u>, <u>Ahn Y</u>. **Source**

Cardiovascular Research Institute Chonnam National University Gwaniu South Korea

Between days 3 and 7 after AMI

b) by TNF-alpha, up-regulates the expression of molecules which are involved in inflammation and cell adhesion. For these reasons, we assessed the extent that treatment of MSC with tumor necrosis factor (TNF)-alpha modifies the characteristics of MSC, important to their engraftment in experimental myocardial infarct. Here, we show that pre-treatment of MSC prior to transplantation with tumor necrosis factor (TNF)-alpha increases adhesiveness, and migration of MSC in vitro and leads to increased expression of bone morphogenetic protein (BMP)-2 by MSC. Moreover, this treatment increases the rate of engraftment of MSC and improves recovery of cardiac function after myocardial infarction. These insights might provide better strategies for the treatment of myocardial infarction.

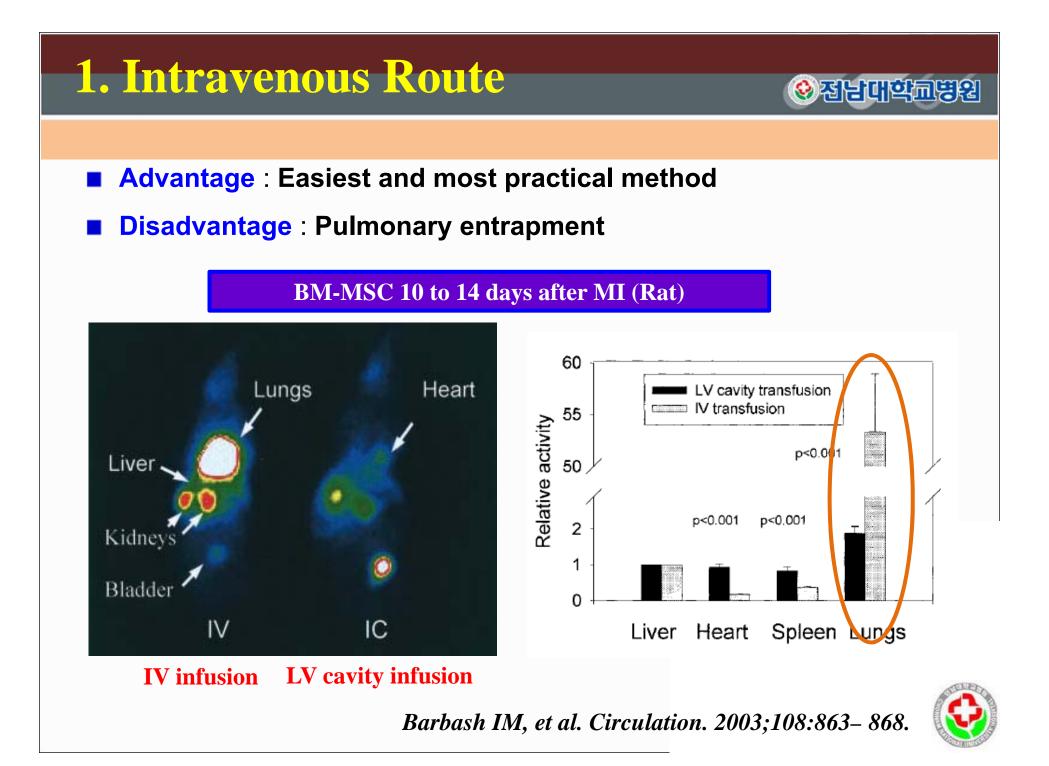
Enhancement of Proliferation Activity

Stem Cells can be Delivered to the

Intravenous

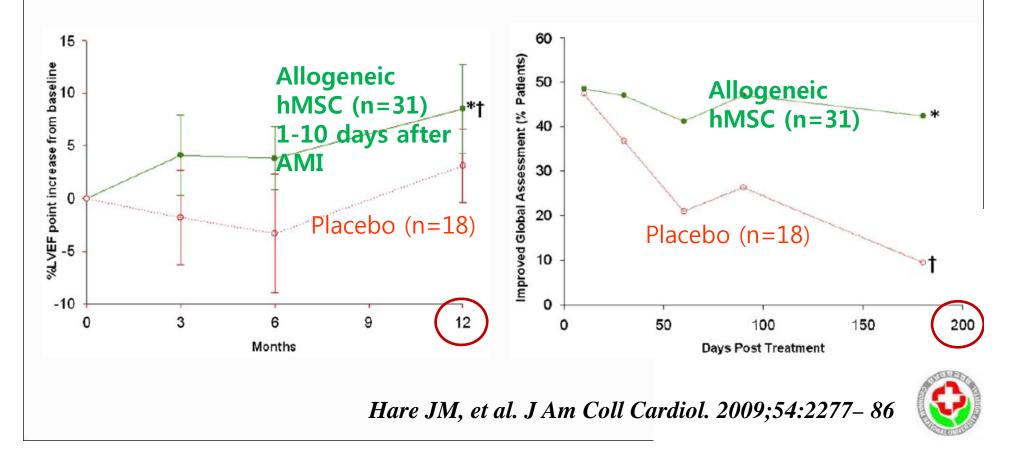
Intracoronary

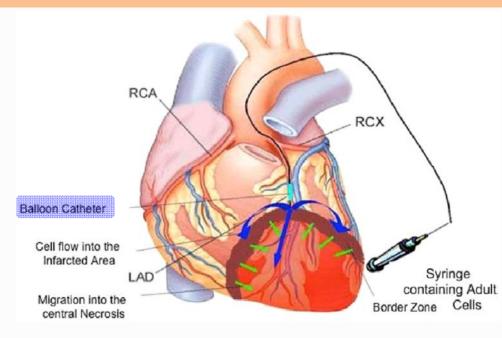
Direct endocardial

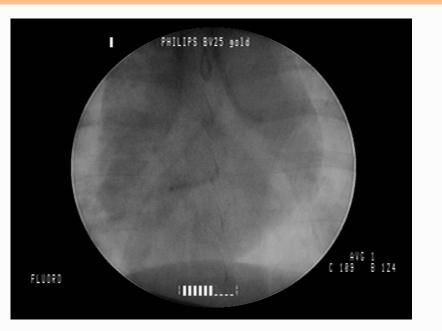

have been used in clinical trials

Direct epicardial

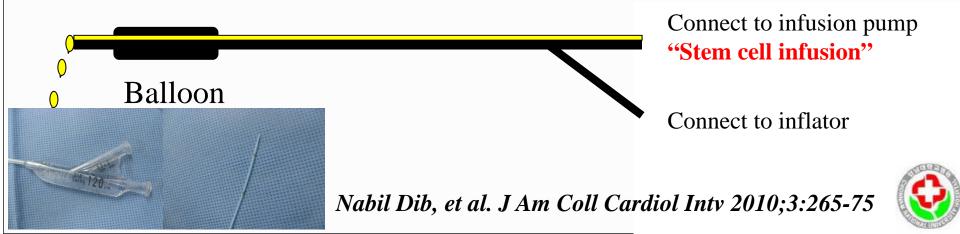
Coronary sinus


1. Intravenous Route

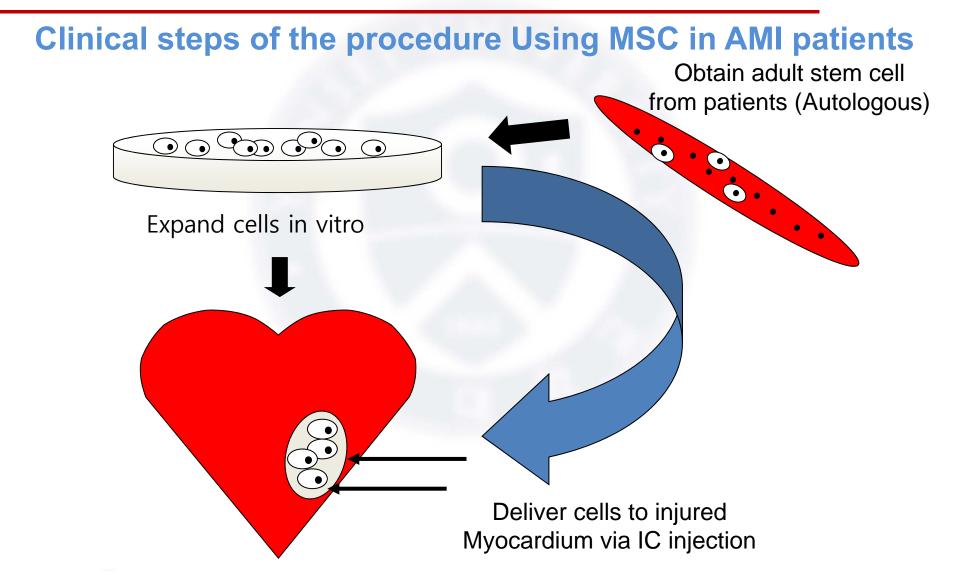

CLINICAL RESEARCH


Clinical Trials

A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Study of Intravenous Adult Human Mesenchymal Stem Cells (Prochymal) After Acute Myocardial Infarction


2. Intracoronary Route

응전남대학교병원


Over the wire balloon

2. Intracoronary Route

A Randomized, Open labeled, multicenter trial for Safety and Efficacy of intracoronary adult human mesenchymal STEM cells after acute Myocardial Infarction (ROSE-STEMMI)

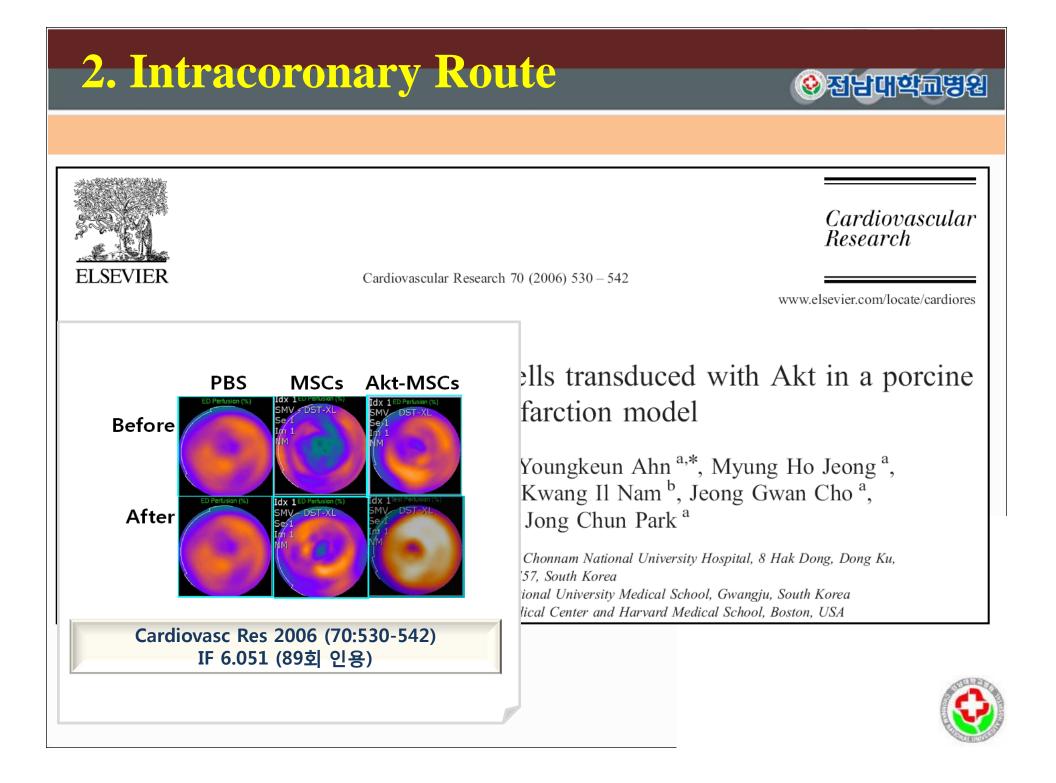
2. Intracoronary Route

Advantages

 Effectively deliver cells to ischemic tissue after full reperfusion therapy after AMI
 Familiarity of angioplasty techniques to interventionist
 Ability to deliver cells during PCI for Acute MI

Disadvantages

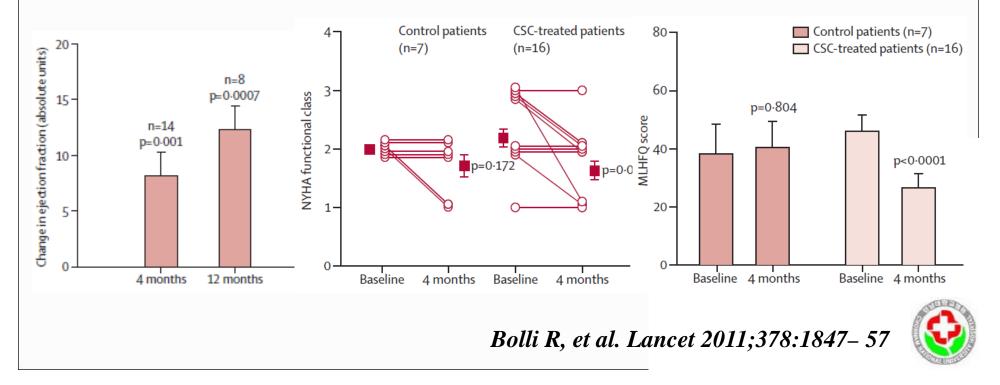
- Concern about


 inducing ischemia
 during coronary artery
 occlusion
- 2. Lack of vessels in chronically
- 3. Occluded areas of scar tissue

Effect on Left Ventricular Function of IC transplantation of Autologous Bone Marrow MSC in Patients With AMI (PPCI <12 hr Sx onset)

BMSC Group	Control Group	p Value
34	35	0.20
32 ± 11	33 ± 10	0.20
13 ± 5	28 ± 10	0.001
2.17 ± 1.3	2.19 ± 1.5	0.20
4.2 ± 2.5	2.7 ± 1.7	0.01
49 ± 9	48 ± 10	0.20
67 ± 11	53 ± 18	0.01
67 ± 3	54 ± 5	0.01
	Group 34 32 ± 11 13 ± 5 2.17 ± 1.3 4.2 ± 2.5 49 ± 9 67 ± 11	Group Group 34 35 32 ± 11 33 ± 10 13 ± 5 28 ± 10 2.17 ± 1.3 2.19 ± 1.5 4.2 ± 2.5 2.7 ± 1.7 49 ± 9 48 ± 10 67 ± 11 53 ± 18

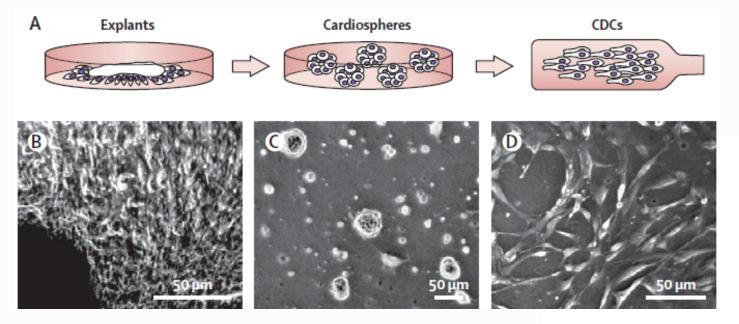
Several imagining techniques demonstrated that bone marrow mesenchymal stem cells significantly improved left ventricular function.



2. Intracoronary Route

Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial (EF ≤ 40%, 113 days after CABG)

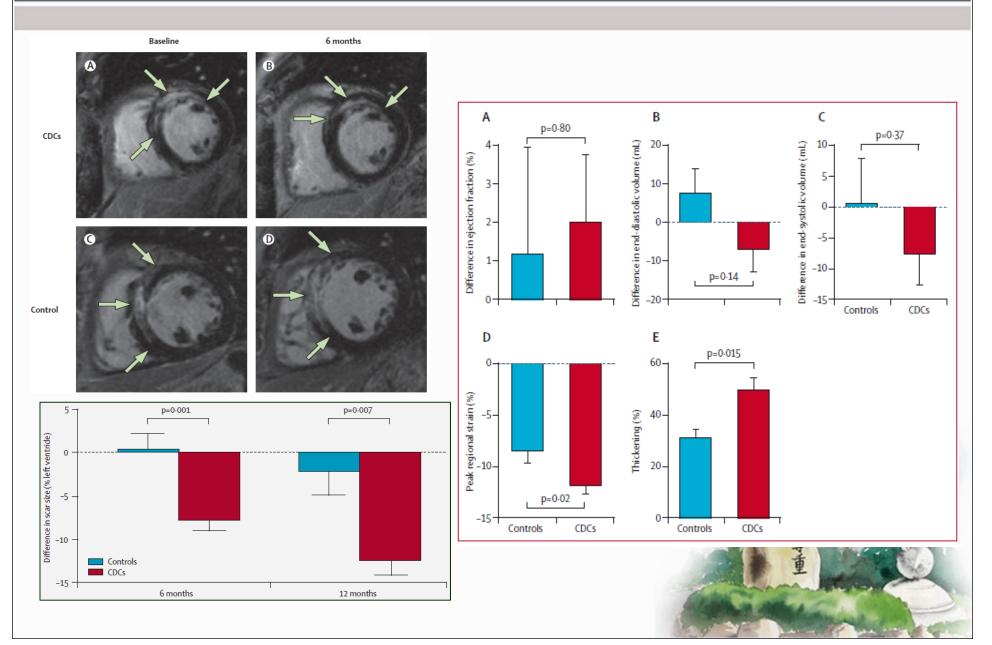
😔 전남대학교병원


Roberto Bolli, Atul R Chugh, Domenico D'Amario, John H Loughran, Marcus F Stoddard, Sohail Ikram, Garth M Beache, Stephen G Wagner, Annarosa Leri, Toru Hosoda, Fumihiro Sanada, Julius B Elmore, Polina Goichberg, Donato Cappetta, Naresh K Solankhi, Ibrahim Fahsah, D Gregg Rokosh, Mark S Slaughter, Jan Kajstura, Piero Anversa

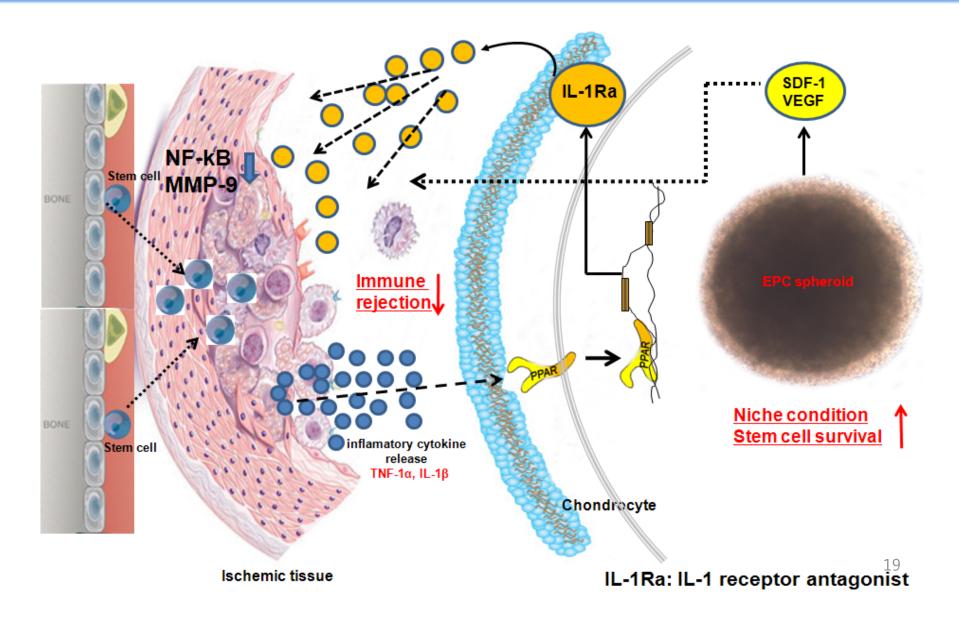
2. Intracoronary Route

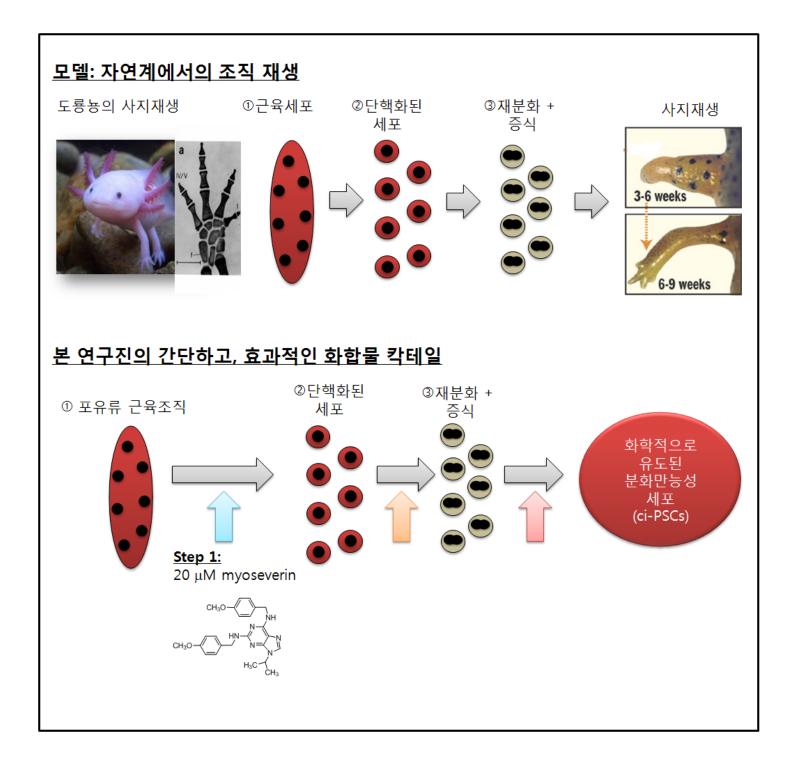
Intracoronary cardiosphere-derived cells for heart $\mathfrak{P} \otimes \mathfrak{P} \otimes \mathfrak{P}$

Raj R Makkar, Rachel R Smith, Ke Cheng, Konstantinos Malliaras, Louise E J Thomson, Daniel Berman, Lawrence S C Czer, Linda Marbán, Adam Mendizabal, Peter V Johnston, Stuart D Russell, Karl H Schuleri, Albert C Lardo, Gary Gerstenblith, Eduardo Marbán



Makkar RR, et al. Lancet 2012;379:895-904



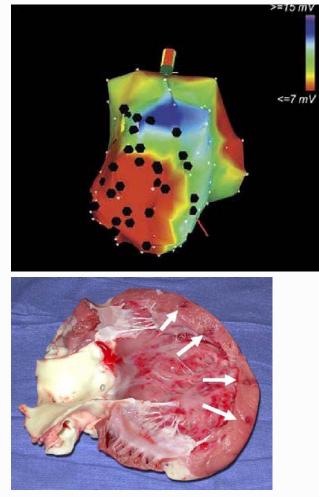

😔 전남대학교병원

면역적합성 줄기세포 융합 치료제 개발 및 작용기전 연구

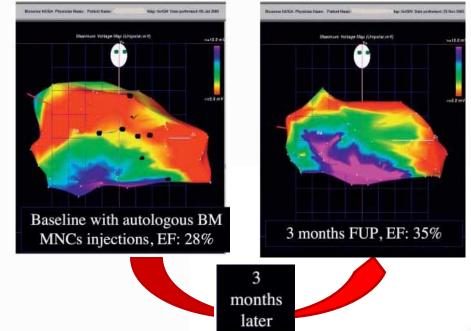
3. Endocardial Route ⊙ 전남대학교병원 Device and method : stem cell injection directly into the myocardium with a catheter navigated in the LV by fluoroscopic guidance or electroanatomic mapping BOCHER

BioCardia Helical Infusion Catheter

- : 2 fluid ports
 - 1 for therapeutic agent and 1 for contrast.


Myostar Cordis-Biosense Webster Needle Injection Catheter

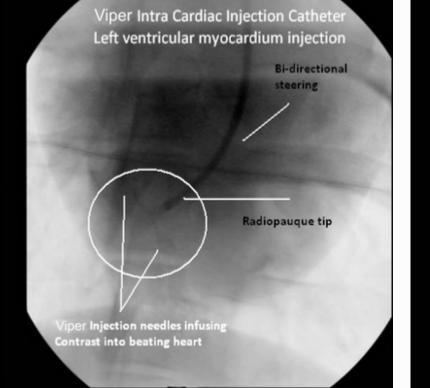
Sherman W, et al. Nat Clin Pract Cardiovasc Med. 2006;3:57-64



NOGA mapping and 3D NOGA-guided intramyocardial injections

Arrows indicate site of injection

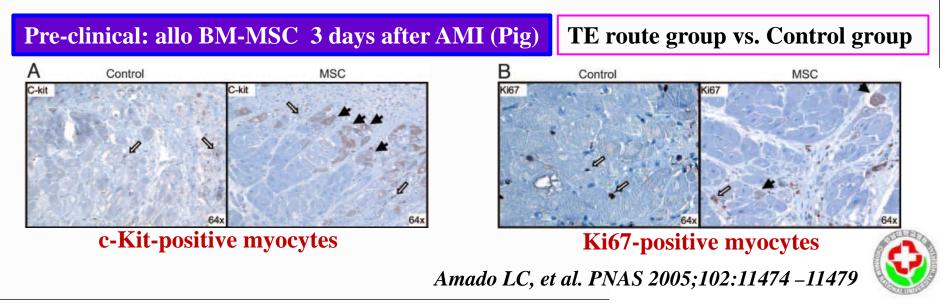
blue and green → normal myocardium red → chronic infarction yellow → border zone of infarction



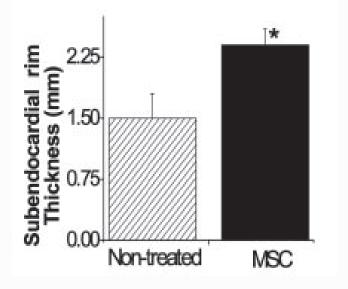
Silvia Charwat, et al. Thromb Haemost 2010; 103: 564 Dib N. Basic Research to Clinical Applications. 2006:213–30.

Viper cardiac injection catheter

www.bostontranstectec.com

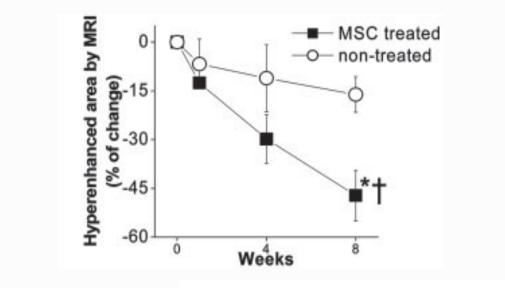

Procedural safety

- Perforation of myocardium, with the potential for cardiac tamponade
- Induction of arrhythmias
- Scar formation of injection site


Gyongyosi M, et al. Circ Cardiovasc Imaging. 2008;1:94-103

↔ 점남대학교병원

Efficacy



Subendocardial rim thickness

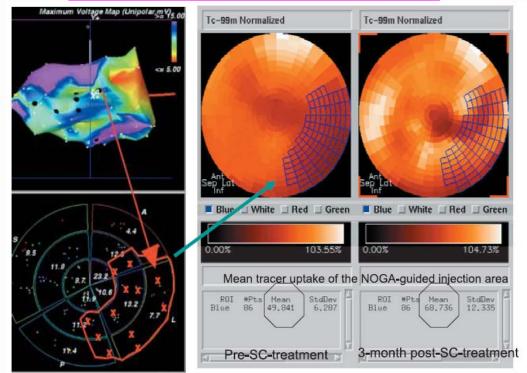
Hyperenhanced area by MRI

😔 전남대학교병원

Ejection fraction: from 25% to 42% at 8 weeks after injection **Pressure-volume loops :** improved LV relaxation and systolic compliance

Allogeneic MSCs injected into regions of damaged myocardium 3 d after MI engraft, stimulate cardiac regeneration, and profoundly decrease myocardial infarct size

Amado LC, et al. PNAS 2005;102:11474 –11479


Efficacy

Clinical: BM-MNC 68±34 days after AMI

NOGA-guided subanalysis of the MYSTAR prospective randomised study

Inclusion criteria: Patients with recent AMI (STEMI) and post-infarction cardiac dysfunction (LVEF 30~45%)

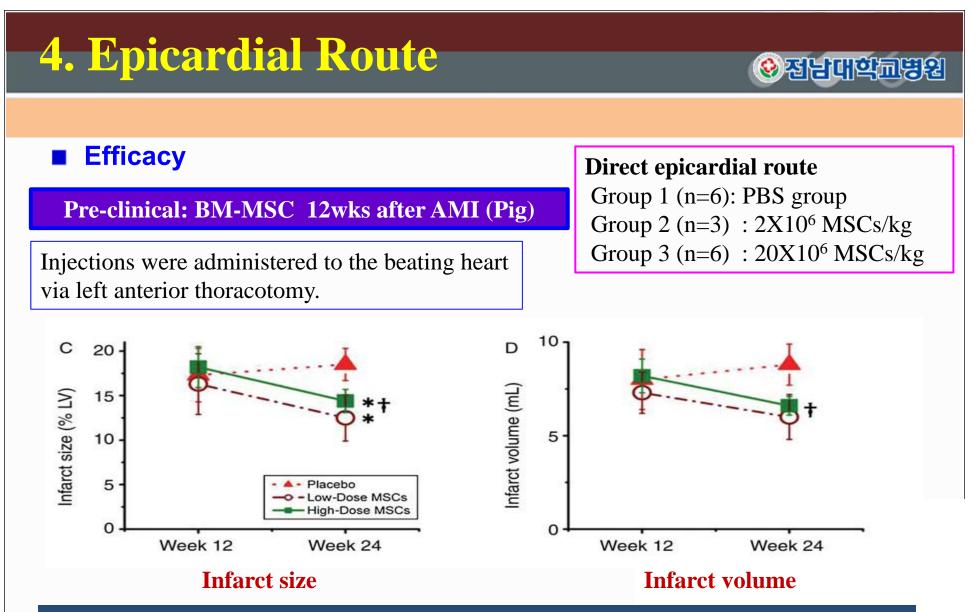
TE route group vs. Control group

Silvia C, et al. Thromb Haemost 103:564-571

◈ 전남대학교병원

	Before BM-MNC therapy	Three months after BM-MNC therapy	P-value
Clinical data			
NYHA	2.0 ± 0.9	1.4 ± 0.6	<0.001
CCS	1.8 ± 0.7	1.2 ± 0.5	<0.001
Transthoracic e	ansthoracic echocardiography		
LA [mm]	53.6 ± 9.0	48.3 ± 7.8	<0.001
EDD [mm]	54.2 ± 7.0	51.9 ± 7.3	0.070
WMSI	1.8 ± 0.5	1.7 ± 0.4	0.200
Ventriculograp	hy		
EDP [mmHg]	23.4 ± 7.7	20.5 ± 8.8	0.186
Infarct size [%]	27.2 ± 10.7	24.1 ± 11.5	<0.0001
EF [%]	38.0 ± 6.1	41.5 ± 8.4	<0.0001
ESV [ml]	166.9 ± 78.2	137.6 ± 36.1	0.002
EDV [ml]	206.9 ± 69.2	207.4 ± 75.4	0.764

Silvia C, et al. Thromb Haemost 103:564-571


4. Epicardial Route

- Most reliable method
- Highly accessible, due to exposure by surgical incision
- Most invasive delivery technique
- Requires either a thoracotomy or sternotomy
- Injections can be made into a beating or arrested heart
- Computer-driven injection devices
- Epicardial application of cell-seeded biocompatible patches or even scaffold-free cell sheets

⊙ 전남대학교병원

Autologous MSCs can be safely delivered in an adult heart failure model, producing substantial structural and functional reverse remodelling

Karl HS, et al. Eur Heart J 2005;102:11474 –11479

5. Coronary Sinus Route

Percutaneous retrograde coronary sinus delivery

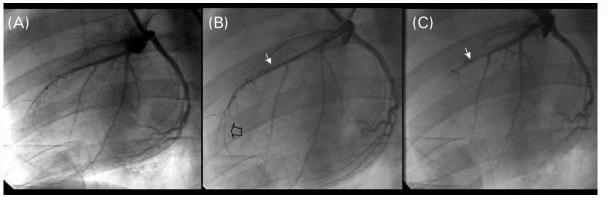
- Very safe
- Potential advantages for more homogenous delivery across the myocardium than IC, IM delivery
- Placement of a catheter into the coronary sinus via either the internal jugular or femoral vein, with the infusion catheter placed over a wire
- A single or double balloon is inflated, followed by infusion

😔 전남대학교병원

Preclinical Trials : Comparative studies of different methods

different methods

1. IC vs. EC vs. IV


A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction

Pre-clinical: Allogeneic BM-MSC following AMI (Pig)

Group 1 (n=6): Intracoronary route Group 2 (n=6): Endocardial route Group 3 (n=6): Intravenous route Sacrificed 14±3 days after transplantation Confirmation of cellular engraftment : DiI and FISH labelling techniques.

Procedural safety: no adverse events

: following IC infusion, half of the pigs exhibited decreased blood flow distal to the infusion site

Freyman F, et al. Eur Heart J. 2006;27:1114-1122

↔ 점남대학교병원

1. IC vs. EC vs. IV

Infarct zone engraftment rate of MSCs : IC >> EC >> IV Extracardiac entrapment rate : EC << IC & IV

 Table 2
 Engraftment of MSCs in tissues varies by delivery technique

Mesenchymal stem cell engraftment 14 days after delivery

	Infarct zone (cells)	Infarct zone (cells/g)	cells/g) Liver (cells/g) Li	
IC	2 864 000 ± 983 000	106 000*± 43 000	1000 ± 1000	11 000 ± 2000
EC	1 393 000 ± 618 000	51 000** <u>+</u> 24 000	700 <u>+</u> 700	4000 ± 3000***
IV	None detected	None detected	9 <u>+</u> 20	$13\ 000\ \pm\ 2000$

*IC vs. EC (P = 0.01), IC vs. IV (P = 0.0008).

**EC vs. IV (*P* = 0.003).

***EC vs. IC (P = 0.06), EC vs. IV (P = 0.02).

IC was more efficient than EC and IV

• IC delivery was associated with decreased coronary blood flow.

• EC delivery was safe and well tolerated and decreased remote organ engraftment with compared with IC and IV deliveries.

Freyman F, et al. Eur Heart J. 2006;27:1114-1122

2. IC vs. IM (epicardial) vs. EC

♯ Analysis of Different Routes of Administration of Heterologous 5-Azacytidine–Treated Mesenchymal Stem Cells in a Porcine Model of Myocardial Infarction

Pre-clinical: Allogeneic 5-aza treated BM-MSC following AMI (Pig)

Group 1 (n=5): Intracoronary route	Sacr
Group 2 (n=5): Intramyocardial route	Con
Group 3 (n=5): Endocardial route	: Di

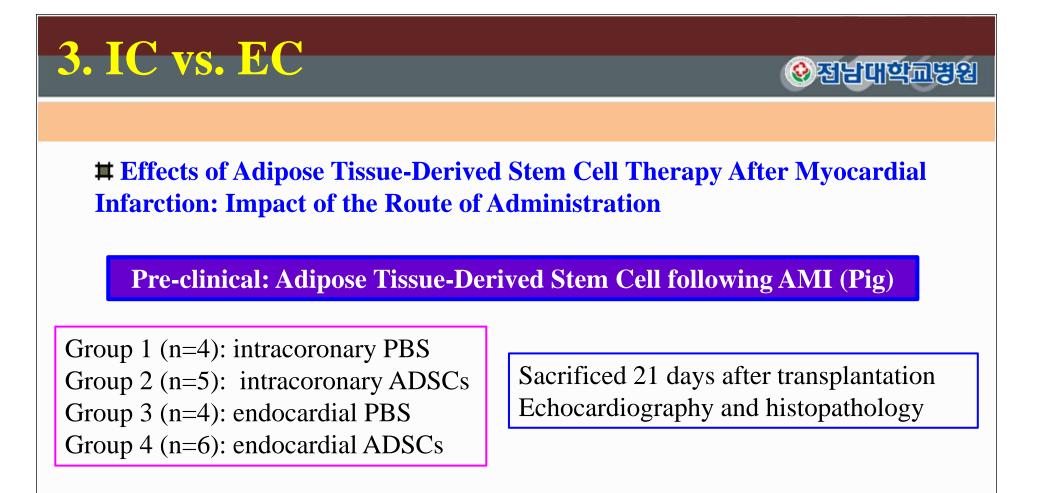
Sacrificed 30 days after transplantation Confirmation of cellular engraftment : DiO and DAPI

Procedural safety: no adverse events

Moscoso I, et al. Transplantation Proceedings 2009;41:2273-2275

♦ 전남대학교병원

2. IC vs. IM (epicardial) vs. EC


Infarc zone engraftment rate of MSCs : IC >> IM & EC

	C	M	EC	NI
Infarcted zone	85.96 ± 19.95 (×10 ⁻³)	12.39 ± 6.7 (×10 ⁻³)	8.09 ± 3.3 (×10 ⁻³)	0.3 ± 0.06 (×10 ⁻³)
Healthy zone	1 ± 0.53 (×10 ⁻³)	0.94 ± 0.67 (×10 ⁻³)	0.75 ± 0.16 (×10 ⁻³)	0.36 ± 0.17 (×10 ⁻³)

- The mean number of engrafted cells within the infarct zone was significantly greater after IC infusion than either IM or EC injection.
- Fluorescent cells were not observed in healthy zones of the myocardium or in healthy animals.

Moscoso I, et al. Transplantation Proceedings 2009;41:2273-2275

Procedural safety: no adverse events

Rigol M, et al. J Cardiac Fail 2010; 16:357–366

Infarct zone engraftment rate of ADSCs : IC (80%) = EC (79%)

Neovascularization : IC > EC

	Intracoronary Administration		Transendocardial Administration	
	Culture Medium (Control) n = 4	$\begin{array}{l}\text{ADSCs}\\n = 5\end{array}$	Culture Medium (Control) n = 4	$\begin{array}{l} \text{ADSCs} \\ n = 6 \end{array}$
Small vessels Large vessels Total number of vessels	141 ± 26 31 ± 4 172 ± 25	$223 \pm 40*$ 38 ± 11 $261 \pm 40*$	162 ± 37 32 ± 14 194 ± 24	$168 \pm 35 \\ 34 \pm 5 \\ 201 \pm 34$

Rigol M, et al. J Cardiac Fail 2010; 16:357–366

Improvement of LV function : IC = EC = control

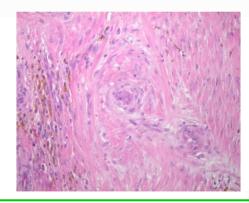
	Intracoronary Administration		Transendocardial Administration	
	Culture Medium (Control) n = 4	$\begin{array}{l} \text{ADSCs} \\ n = 5 \end{array}$	Culture Medium (Control) n = 4	$\begin{array}{l} \text{ADSCs} \\ n = 6 \end{array}$
3 weeks after administration				
LVEF (%)	$49 \pm 2^{*}$	$49 \pm 10^{*}$	$51 \pm 8*$	$51 \pm 12^{*}$
LVEDV (mL)	27.3 ± 3.9	32.0 ± 4.8	34.1 ± 5.9	38.4 ± 13.9
LVESV (mL)	$13.8 \pm 1.3^*$	$16.2 \pm 2.7*$	$16.6 \pm 3.2^*$	$17.7 \pm 2.9^*$

 Both pathways of ADSCs delivery are feasible, producing a similar number of engrafted and differentiated cells, although intracoronary administration was more effective in increasing neovascularization

Rigol M, et al. J Cardiac Fail 2010; 16:357–366

응 전남대학교병원

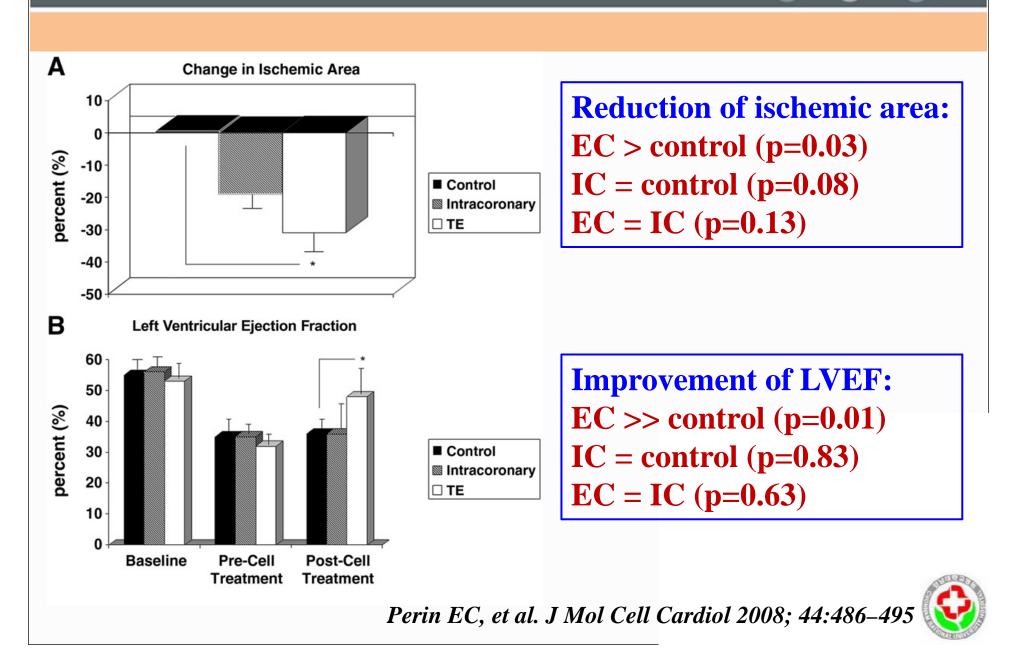
Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction

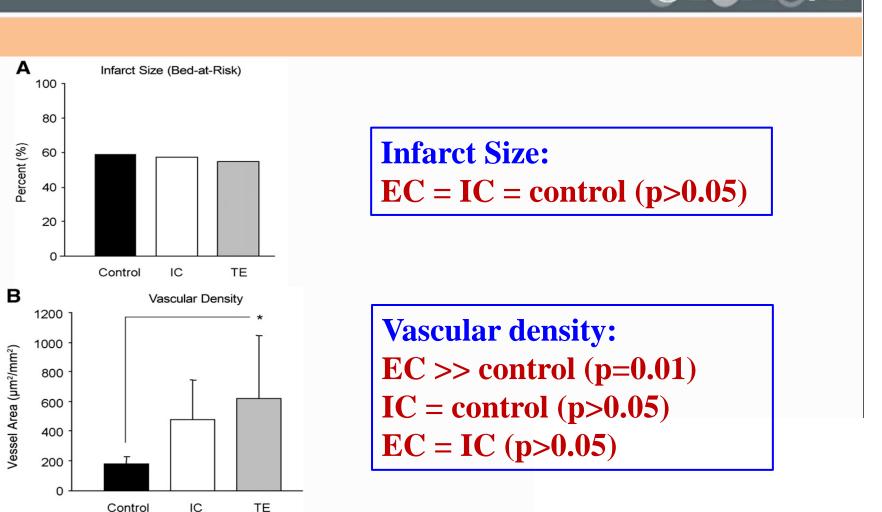

Pre-clinical: allogeneic BM-MSC at 7 days after AMI (Canine)

Group 1 (n=7): Intracoronary route Group 2 (n=6): Endocardial route Group 3 (n=6): Control Sacrificed 21 days after transplantation Echocardiography and histopathology

Procedural safety: 2 dogs died after randomization and IC infusion of MSCs

Dog1: extensive **microvascular "plugging"** associated with MSCs


Dog2: intestinal ischemia/infarct


Perin EC, et al. J Mol Cell Cardiol 2008; 44:486–495

4. IC vs. EC

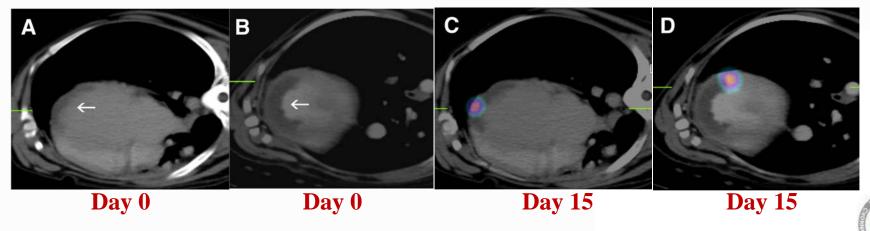
◈ 전남대학교병원

• EC : safe, higher cell retention with an increased vascularity and greater functional improvement than did the IC group

Perin EC, et al. J Mol Cell Cardiol 2008; 44:486–495

😔 전남대학교병원

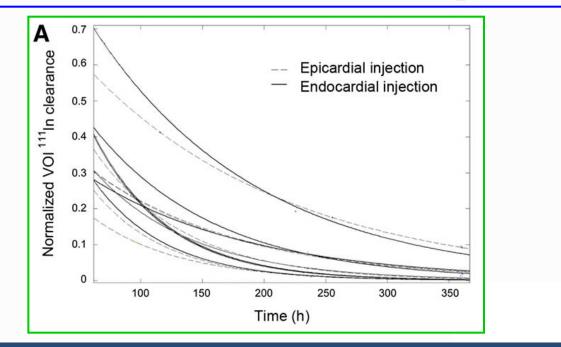
5. IM (epicardial) vs. EC


Comparison of Initial Cell Retention and Clearance Kinetics After Subendocardial or Subepicardial Injections of Endothelial Progenitor Cells in a Canine Myocardial Infarction Model

Pre-clinical: EPC following AMI (Dog)

Group 1 (n=7): epicardial route Group 2 (n=7): endocardial route Sacrificed 15 days after transplantation Serial SPECT/CT

父점남대학교병원


Procedural safety: no adverse events

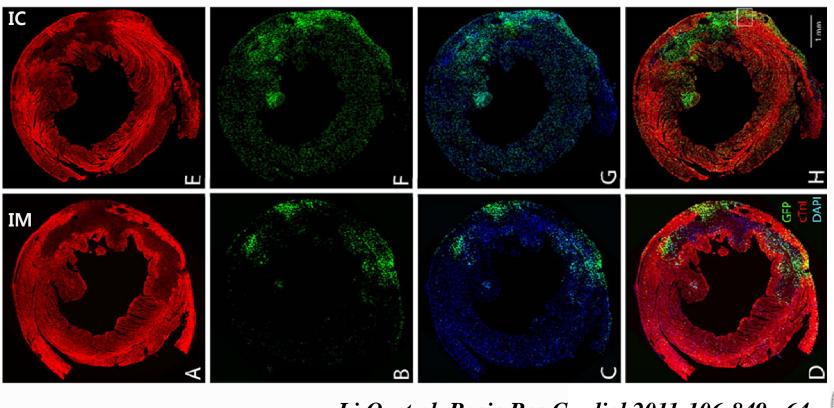
Mitchell AJ, et al. J Nucl Med 2010; 51:413-41

5. IM (epicardial) vs. EC

Initial EPC retention rate: IM (57 %) = EC (54%) (p=0.53) **Clearance half-life:** IM (69hr) = EC (60hr) (p=0.81)

 Subendocardial injections, clinically more practical, show clearance kinetics comparable to those of subepicardial injections and will facilitate the ultimate clinical use of this treatment modality

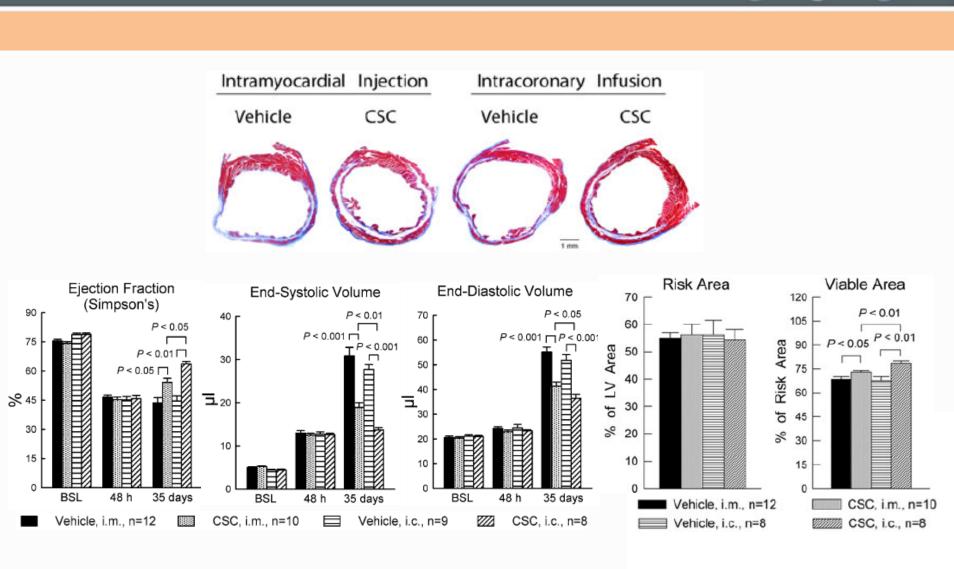
Mitchell AJ, et al. J Nucl Med 2010; 51:413–417


😔 전남대학교병원

6. IC vs. EC

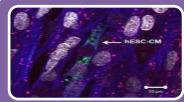
◈ 전남대학교병원

Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models


Qianhong Li · Yiru Guo · Qinghui Ou · Ning Chen · Wen-Jian Wu · Fangping Yuan · Erin O'Brien · Tao Wang · Li Luo · Gregory N. Hunt · Xiaoping Zhu · Roberto Bolli IC: More homogeneous distribution

Li Q, et al. Basic Res Cardiol 2011;106:849-64

6. IC vs. EC


Li Q, et al. Basic Res Cardiol 2011;106:849-64

◈ 전남대학교병원

Summary and Conclusion

Procedural

safety →

Engraftment \rightarrow |C \geq EC=|M

All methods are relatively safe IC => microvascular "plugging"

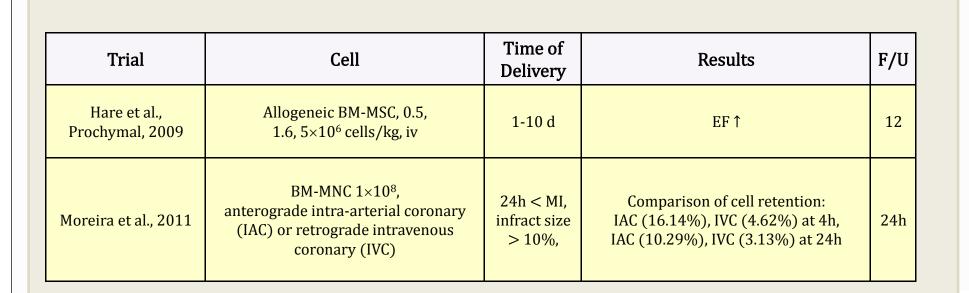
IC = EC = IM (?)

Extracardiac retention

of stem cells \rightarrow

 $EC=IM \leq IC \& IV$

Improvement of heart function 🗲


Intramyocardial Delivery in Clinical Trials @ 전남대학교명원

Trial	Cell	Time of Delivery	Results	F/U
van Ramshorst et al., 2 009	Autologous BM-MNC, 1×10 ⁸ cells, intramyocardial injection	Chronic MI	Modest improvement of summed stress score, LVEF in BMC group at 3 mo, i ncrease of quality of life at 6 mo	3, 6
Williams et al., 2011	transendocardial, intramyocardial injection of auto BM- MNC (1 or 2×10 ⁸), or MSC (1 or 2×10 ⁸)	ICMP	EDV (208.7±20.4 to 167.4±7.32mL), infarct size ↓, regional function ↑ at 3 mo, changes in chamber dimensions not diff at 6 mo	12
Ahmadi et al., 2012	BM-CD133+BMC, 1.77×10 ⁶ ±1.14×1 0 ⁶ CD133+ cells, intramyocardial transplantation	Candidate of CABG after MI	Safe, no benefit	60

Kim YS and Ahn Y, Korean Circ J 2012;42:71-9

Intravenous Delivery in Clinical Trials

ジ전남대학교병원

Kim YS and Ahn Y, Korean Circ J 2012;42:71-9

Intracoronary Delivery in Clinical Trials

Trial	Cell	Time of Delivery	Results	F/U
Meyer et al., BOOST trial, 2009	Autologous BMC, 24.6×10 ⁸	5 d	EF↑	61
Tendera et al., REGENT trial, 2009	BM-MNC (1.78×10 ⁸), CD34+ (1.9×10 ⁶)	PCI after 12h	EF↑	6
Beitnes et al., ASTAMI trial, 2009	BMC, 7×10 ⁷	4-7 d	Safe, exercise time ↑, no other effects	36
Assmus et al., REPAIE-AMI, 2010	Auto BMC, 236±174×10 ⁶	3-7 d after reperfusion	Still safe	24
Grajek et al., 2010	BMC, 2.34±1.2×10 ⁹	4-6d after PCI	No differences in EF, LVEDV, LVESV, and spiroergometric stress test	6, 12
Arnold et al., TECAM study, 2010	BM-MNC, 97.6±61.4×10 ⁶	STEMI, <9±3d of reperfusion	No difference in stenosis, plaque volume	9
Strauer et al., STAR-heart study 2010	BMC, 6.6±3.3×10 ⁷	Chronic HF EF<35% (mean post MI interval: 8.5 yr)	Haemodynamics, exercise capacity, oxygen uptake, LV contractility, long-term mortality↑ in BMC group	
Seth et al., ABCD Trial, 2010	BM-MNC	DCMP EF<35%	EF↑, ESV↓at6 mo EF↑, ESV↓at36 mo	36
Traverse et al., 2010	auto BMC 1×10 ⁸	STEMI	EF ↑, LVEDP↓	6
Mansour et al., COMPARE-AMI, 201 1	CD133+ HSC, 1×10 ⁷	3~7 d after PCI	Safe, EF ↑	12
Hirsch et al., HEBE trial, 2011	BM 296±164×10 ⁶ or peripheral MNC 287±137×10 ⁶	IC 4-7 d after MI	No difference	4
Penn et al., 2011	Allo MultiStem, 2×10^7 , 6×10^7 , 1×10^8	2-5 d after AMI	EF ↑, LV stroke volume↑	4
Bolli et al., SCIPIO, 2011	CSCs, 1 million	EF<40%, CABG, ICMP	EF ↑, Infarct size↓	12
Solheim et al., 2011	BM-MNC 68×10 ⁸	6d after the STEMI	No changes in prothrombotic markers	3
Roncalli et al., BONAMI trial, 2011	auto BMC	9.3 d after STEMI	Myocardial viability ↑	3
Makkar et al., CADUCEUS, 2012	Autologous cardioshpere, 12.5 ~ 25 million	2-4wk after MI (EF 25-45%)	Scar mass ↓, viable heart mass ↑, regional contractility ↑, no changes in EDV, ESV, LVEF	6

Thank you for your attentions!

3rd Gwangju-Boston Joint Cardiology Symposium

🚱 Chonnam Nat. Univ. Hosp.

Date: 25th - 26th May, 2012 Venue: Deok-Jae Hall/Myung-Hak Hall, Chonnam National University Medical School, Gwangju

