State of Art Hybrid Approach

for Complex Aorta Diseases

Won Ho Kim, MD

Division of Cardiology, Eulji University Hospital Eulji University School of Medicine, Daejeon, Korea

Introduction

.Hybrid procedure in the modern era :

.Combination of surgery & percutaneous intervention, staged by minutes, hours, or at most, days

.Hybrid CABG/PCI, hybrid PCI/valve, hybrid AF procedure

.Hybrid approach for complex aorta Dz

J Am Coll Cardiol Intv 2008;1:459-68

Hybrid procedure for complex aorta Dz

.Thoracic aortic aneurysm / dissection (TAA-D)

.Thoraco-abdominal aneurysm / dissection

.Abdominal aortic aneurysm / dissection

Hybrid approach in TAA & TAD

.Limitation of endovascular stent grafting

.Goal of hybrid approach :

.Maintain flow to supra aortic trunk (prevent stroke) .Prevent the significant morbidity, mortality associated with these complex arch pathology & surgery

J Cardiovasc Surg 2010;51:807-19

Anatomic landing zone map

.Zone 0 :

.Confined to the ascending aorta .Necessity for achieving a proximal seal in the ascending aorta

.Zone 1 : .Region between IA & Lt.CCA

.Zone 2 : .Region between Lt.CCA & Lt.SCA

J Endovasc Ther 2002;9(suppl 2):II98-105

Hybrid Aortic Repair

.2 components :

.Open surgical procedure :

.Based on the extent of the arch that is involved with Dz .Allows proximal extension of SGs into the aortic arch

.Thoracic endovascular aortic repair (TEVAR) (or open stent graft)

Various surgical procedures

.Ascending aorta to innominate artery (IA) & Lt.CCA bypass

.Ascending aorta replacement with reimplantation IA & Lt.CCA

.Ascending aorta replacement & graft to IA & CCA bypass

.Rt.CCA to Lt.CCA bypass with or without Lt.CCA to LSA bypass

.Rt.axillofemoral bypass & Rt.CCA to Lt.CCA bypass

.Bilateral axilofemoral bypass & Lt.CCA to LSA bypass

Proposed classification-1 (TAAD)

.Classified based on :

.Anatomy of the lesion (extent of the lesion)
.Suitability of the proximal & distal landing zones

.Type I, type II, & type III hybrid arch repairs

.By Szeto W, et al.

J Cardiovasc Surg 2010;51:807-19

Semin Thorac Cardiovasc Surg 2009;21:347-54

.Type I :

.Isolated aortic arch aneurysm

.Brachiocephalic bypass with endovascular repair of the aortic arch

Arch debranching procedure : After debranching, exclusion of the lesion with TEVAR

.Eliminating hypothermic circulatory arrest

& potentially CP-bypass

Ascending aortic aneurysm with extension into distal arch

.Type II :

.Aortic arch reconstruction with the stented -elephant trunk

Surgical proximal aortic reconstruction combined with SG of the distal arch & DTA

.Not aneurysmal at DTA (normal distal landing zone)

Ann Thorac Surg 2007;83:S819-23

.Typically, SG is deployed during hypothermic arrest : .Frozen elephant trunk creation

.Antegrade via the open arch into the DTA

.Following SG deployment :

.Repair the ascending aortic aneurysm & arch

.Using a standard Dacron grafts

Ann Thorac Surg 2007;83:S819-23

.Extensive TAAs with involvement of the ascending, arch, & DTA

.Type III :

.Elephant trunk repair with completion

endovascular repair of the thoraco-abdominal aorta

.Typically, 2 staged procedure :

.First stage, similar to that of type II repair :

.Open arch surgery, or frozen elephant procedure

.Secondary placement of a thoracic SG

Eur J Cardio Thorac Surg 2009;36:956-61

CT-aorta

Maximal diameter : .6.3 cm in the aortic arch .4.6 cm in the ascending aorta .4.3 cm in the DTA

Elephant trunk completion & CABG

.Valiant® Thoracic Stentgraft (Medtronic, Santa Rosa, California) : .Made of 40-36 mm tapered diameter & 150mm length

Post-stent graft-CT-Aorta

Proposed classification-2 (TAAD)

.Classified based on :

Whether the arch is surgically replaced or excluded with a stent-graft

.Type I, type II hybrid arch repairs

.By Koullias GJ, et al.

.Type II hybrid repair:

.Arch is retained but SG excludes the arch

.Role of TEVAR is primary

.Open surgical component :

.An adjunctive for revascularizing the great vessels

Safety & efficacy (in TAA / TAD)

.Acceptable mortality & morbidity

.Higher incidence of early endovascular leaks : .High resolution at 6 months of follow-up (90%)

.Long term results are unknown

State-of-the-Art of Hybrid Procedures for the Aortic Arch: A Meta-Analysis

.15 studies with 463 patients

.Outcomes :

.30-day mortality (8.3%)

.Stroke (4.4%)

.Paraplegia (3.9%)

.Endoleak rates (9.2%)

.Results compare favorably with surgery

Hybrid repair of thoracic aortic lesions for zone 0 and 1 in high-risk patients

.N=38 (Zone 0;n=27, zone 1;n=11), follow-up of 28 months

.Outcomes : .Post op HD (7.9%) .Paraplegia (2.7%) .Stroke (13.1%)

.Overall 30-day mortality (23.7%)

Hybrid Aortic Arch Debranching With Staged Endovascular Completion in DeBakey Type I Aortic Dissection

.Midterm results of a hybrid approach to DeBakey type I AD

.Outcomes :

.Hospital mortality (4.2%)

.Complete thrombosis of the residual distal FL (95.6%)

.Overall actuarial survival at 28 months (92.1 \pm 7.9%)

Thoracoabdominal aneurysm-dissection

.A fundamental problem in the surgery :

Extensive aortic exposure & prolonged interruption of aortic flow to the visceral branches while excluding the aneurysm itself from circulation

.Associated with remarkable morbidity & mortality rates

Circulation. 2008;118:808-17

Benefit of hybrid approach

.Not require thoracotomy :

.Fewer systematic & cardiac complications

.Less postoperative pain & blood loss

.Fewer coagulation disorders

.Reduced rate of spinal cord injury

.Reduced duration of mesenteric & visceral ischemia

.Reduced renal failure

Ann Thorac Surg 2010;89:1475-81

Various surgical procedures

.Iliac-celiac-superior mesenteric artery (SMA) bypass

.Retrograde aortoceliac-SMA bypass

.Aorto-innominate & aorto-Lt.CCA bypass

.Ascending aorta to innominate artery (IA) & Lt.CCA bypass

.Visceral or renal re-routing (bypass)

Single or staged (2nd stage) procedure

.Single stage strategy :

.Eliminate the risk of intersurgical aortic rupture .Offer a prompt iliac or aortic access site

(when femoral accesses are not adequate)

.Two staged approach :

.Reduces the burden of procedure

.Theoretically, reduces the risk of coagulopathy

J Cardiovasc Surg (Torino) 2010;51:821-32

Safety & efficacy (in thoracoabdominal aortic pathology)

.Reduce complications in the average, low risk patient

Extend the indications for repair to patients considered higher risk based on age, co-morbidities, or anatomic considerations

.Debate – high risk patients (outcomes of meta-analysis)

J Am Coll Surg 2007;205:420-31

Hybrid procedures for thoracoabdominal aortic aneurysms and chronic aortic dissections – A single center experience in 28 patients

.Mean follow up 22 months, upto 6 years

.Outcomes :

.30 days mortality rate (14.3%)

.Overall survival rate at 3 years (70%)

.Type I endoleak rate (8%)

.Permanent paraplegia rate (11%)

J Vasc Surg 2008;47:724-32

Combined endovascular and surgical approach (CESA) to thoracoabdominal aortic pathology: A 10-year experience In high risk patients : Acceptable morbidity & mortality

Mean follow up of 16.6 months (range, 1-119 months) with a hybrid approach in 20 patients

.Outcomes :

.No perioperative mortality

.Cumulative survival at two years (76%)

.Two stage approach is preferable

J Vasc Surg 2009;49:1125-34

.To assess the safety & efficacy of these technique : .19 studies with a total of 507 patients

.Technical success, visceral graft patency, spinal cord ischemia, renal insufficiency, & 30 days mortality

LSA coverage during TEVAR

Or

.Up 40% of patients undergoing TEVAR : .Pathology that extends near the LSA

Debate regarding the operative management of the LSA :

.Satisfactory outcomes with intentional coverage

.Revascularization to reduce the incidence of complications

such as stroke, paraplegia, arm ischemia

J Vasc Surg 2010;51:1329-39

The Society for Vascular Surgery Practice Guidelines: Management of the left subclavian artery with thoracic endovascular aortic repair

.Recommendation, but very low evidence

.Rec 1 :

In elective TEVAR (coverage of LSA for SG sealing)

.Suggest routine pre-op revascularization

.Rec 3 :

.In urgent TEVAR (life threatening condition)

.Suggest that revascularization should be individualized

J Vasc Surg 2009;50:1155-8

.Rec 2 :

.In anatomy that compromises perfusion to critical organ

.Strongly recommended routine pre-op revascularization :

.Presence of a patent LIMA to CABG

.Stenotic or poor developed Rt.VA

- .Functioning AVF in the Lt.arm (HD patient)
- .Prior infra-renal aortic repair with ligation of lumbar artery
- .Hypogastric artery occlusion

.Abnormality of Lt.VA or vertebrobasilar collaterals

J Vasc Surg 2009;50:1155-8

Outcomes of the endovascular management of aortic arch aneurysm: Implications for management of the left subclavian artery

Outcome	Revascularized (n = 35)	Not revascularized (n = 43)	P value
Stroke, No. (%)	0	5(11.6)	.061
Paraplegia, No. (%)	0	3(6.98)	.248
Death, No. (%)	0	6 (14.0)	.03
Combined outcome, No. (%)	0	12 (27.9)	<.0001

Left subclavian artery coverage during thoracic endovascular aortic repair and risk of perioperative stroke or death

.30 days-stroke or mortality (no cover, n=454 vs cover, n=279) :

.Stroke rate 5.7%, mortality rate 7.0%

.Post-traumatic aortic pseudo-aneurysm .Left.hemothorax with multiple fib fracture

Modified TEVAR with chimney technique

SG deployment

Conclusion

.Selection of hybrid approach :

.High-risk for surgery

Inadequate length of the landing zone

.Results compare favorably with surgery (in TAA / TAD) .Debate in patients with thoracoabdominal aortic pathology .Revascularization of LSA before endovascular stenting

Thanks yours attention