

Ventricular Assist Device

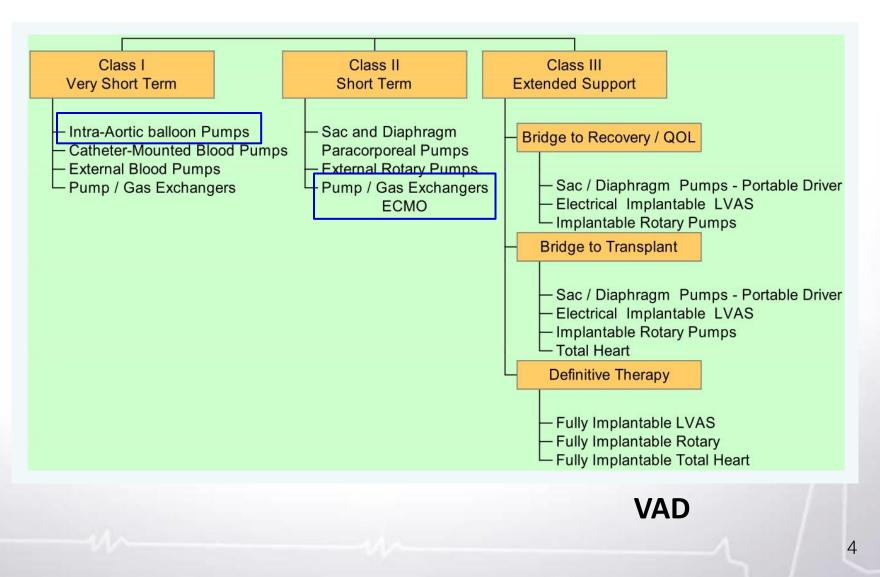
2013.04.19. Sang-Hyun Ihm. MD, PhD. Division of Cardiology The Catholic University of Korea

Introduction

General Criteria for candidacy for MCS

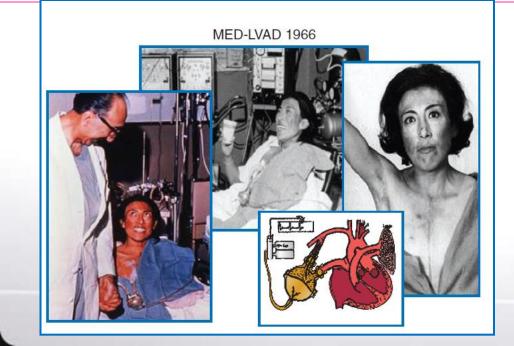
Refractory End stage HF (NYHA class IV or stage D HF)

- Hemodynamics
 - Cardiac index < 2.0L/min, Stroke volume
 - RA pressure>10mmHg, PCWP >15mmHg


Clinical examination

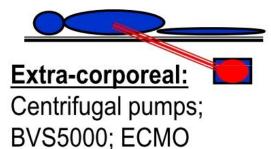
- Cool and constricted extremities reflective of poor perfusion
- Low BP, tachycardia, rales or distended neck veins
- Laboratory data impaired systemic perfusion
 - Prerenal azotemia
 - Hepatic dysfunction
 - Prolong coagulation levels
 - Reduced urine output in response to diuretics

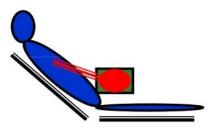
Length of support


History of MCS

1800's	LeGallois	'Concept of mechanical support'
1953	Gibbon	'Development of CPB'
1957	Clevland Clinc.	'1 st Animal Implant (lives 90 min)'
1966	DeBakey	'First use of a pneumatic device as a B to R'
1967	Barnard	'Heart Transplantation (pts lives 18 days)'
1969	Cooley	'Total Artificial Heart (TAH)'
1970's	Developme	nt of a variety of VAD
1982	Dr. DeVries	'First implantation of TAH as a permanent device
		-pts' name is Clark (112days alive) with Javik 7-
1985	Multicenter	evaluation of LVAD as a B to T
1991	Moratorium	on the use of the TAH
1994	FDA approv	al of a LVAD as a B to T (Heartmate)
1996~	Ra	andomized trial comparing
2003	FDA approv	al as a DT
Present	Wearable L	VAD with medical therapy 5
	1953 1957 1966 1967 1969 1970's 1982 1985 1991 1994 1996~ 2003	1953Gibbon1957Clevland Clinc.1966DeBakey1967Barnard1969Cooley1970'sDevelopment1982Dr. DeVries1985Multicenter1991Moratorium1994FDA approv1996~Ra2003FDA approv

the evolution of the various types of blood pumps^l used for mechanical circulatory support (MCS)


Roller Pumps	Pulsatile Counterp		Centrifug Flow	al Axial F	low		Maglev Centrifu Flow	gal
1950	1960	1970)	1980	1990	2000	2010	>
CPB 1951	LVAD 1963		CMO 972	Implantable Pulsatile Devices 1982–1986		Implantable Axial Flow LVADs 1998–2000	Percutaneous LVADs	



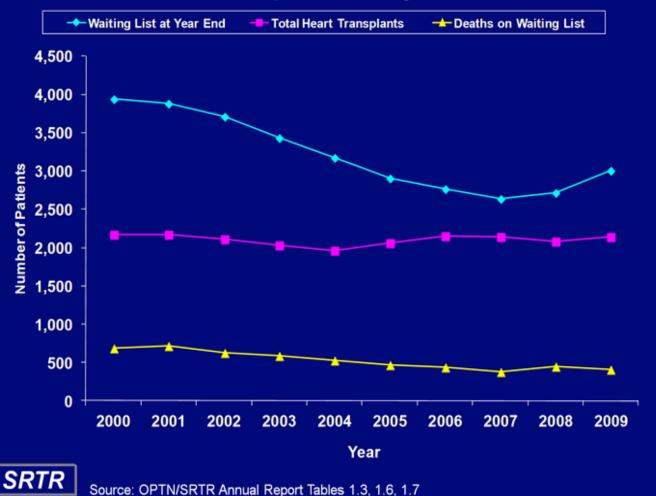
Position

Para-corporeal: Thoratec; MEDOS; Berlin Heart

Implantable:

Heartmate; Novacor; CardioWest TAH; LionHeart Micromed; HeartMate II; AB-180; Jarvik 2000 * VENTRASSSIT

- A mechanical pump that is surgically attached to one of the heart's ventricles to augment or replace native ventricular function
- Can be used for the left (L VAD), right (R VAD), or both ventricles (Bi VAD)
- Are powered by external power sources that connect to the implanted pump via a percutaneous lead (driveline) that exits the body on the right abdomen
- Pump output flow can be pulsatile or nonpulsatile


rld

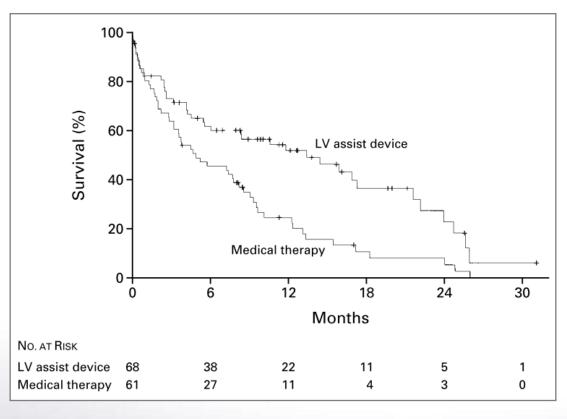
Why Do We Need VADs?

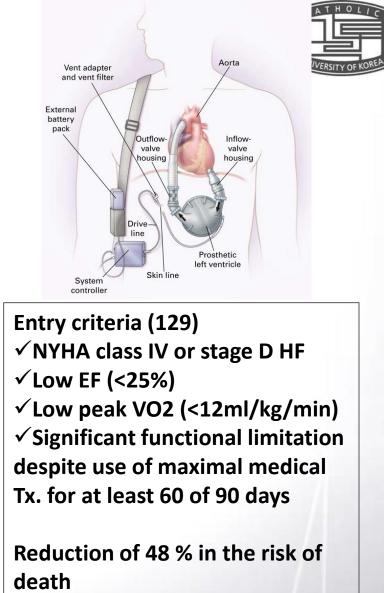
Waitlist and Transplant Activity for Heart, 2000-2009

H

>

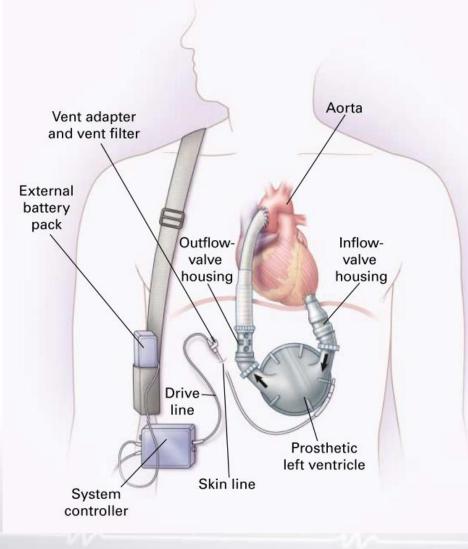
Purpose for VAD




- Bridge to transplant (BTT)
 - most common
 - allow rehab from severe
 CHF while awaiting
 donor
- Bridge to recovery (BTR)
 - unload heart, allow "reverse remodeling"
 - can be short- or longterm

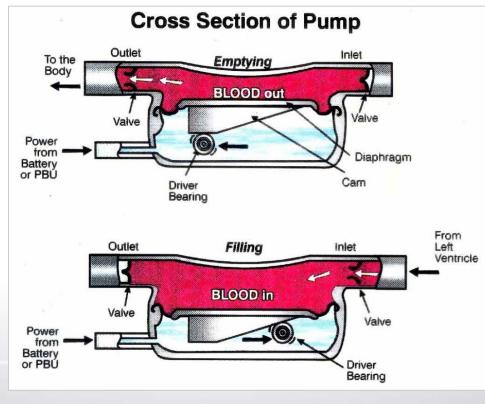
- "Destination" therapy (DT)
 - permanent device,
 instead of transplant
 - currently only in transplant-ineligible patients
- Bridge to candidacy (BTC)/ Bridge to decision (BTD)
 - when eligibility unclear at implant
 - not true "indication" but true for many pts

REMATCH study



Rose EA et al., N Engl J Med, Vol. 345, No. 20;November 15, 2001

HeartMate XVE

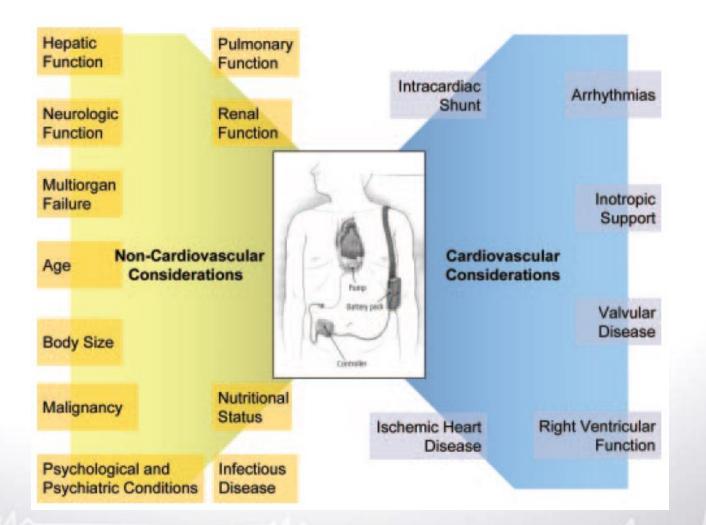

- II50 g weight
- Stroke volume, max 83 mL
- Beating, max 120/min
- Flow rate up to 10 L/min

Pulsatile : HeartMate XVE

- ✓ 25 mm tissue valve (porcine) within Dacron graft
- ✓ Blood chamber/Polyurethane diaphragm/motor chamber
- ✓ Implanted in abdominal pocket
- ✓ Wearable battery pack + percutaneous line

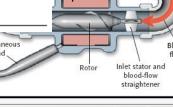
Optimal candidates for VAD

- NYHA functional class IV symptoms
- Life expectancy < 2 years
- Not a candidate for heart transplantation*
- Failure to respond to optimal medical management for at least 60 of the last 90 days*
- Left ventricular ejection fraction ≤ 25%*
- Refractory cardiogenic shock or cardiac failure⁺
- Peak oxygen consumption ≤12 mL /kg/min with cardiac limitation
- Continued need for intravenous inotropic therapy limited by symptomatic hypotension, decreasing renal function, or worsening pulmonary congestion*
- Recurrent symptomatic sustained ventricular tachycardia or ventricular fibrillation in the presence of an untreatable arrhythmogenic substrate
- Body surface area > 1.5 m2*‡


Poor candidates for a VAD

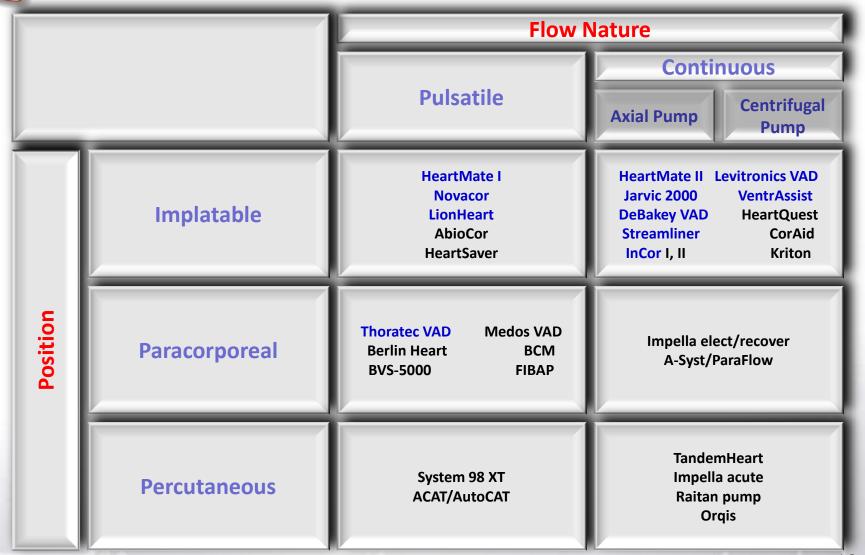
- Include those with
 - : irreversible renal failure
 - : severe disease of the vascular system of the brain
 - : cancer that has spread (metastasized)
 - : severe liver disease
 - : blood clotting disorders
 - : severe lung disease
 - : infections that do not respond to antibiotics
 - : extreme youth or age

Factors involved in determining appropriateness of VAD implantation



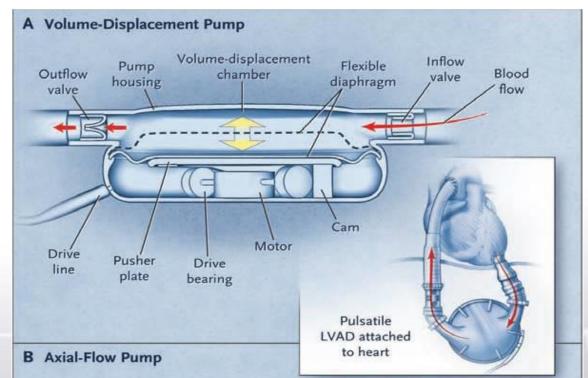
Continuous-Flow Ventricular Assist Device

	0.9-	Table 2. Primary End Point and Hazard Ratios, Accord	ding to Treatment Group.*				Jod- Pump	One-wa valve	ay inflo (open)
rvival	0.8-	End Point	Continuous-Flow LVAD (N=134)	Pulsatile-Flow LVAD (N=66)	Hazard Ratio (95% CI)	P Value	nping housing	Flexible diaphragm	
fSui	0.6-		no. (% [9	5% CI])					±
Probability of Survival	0.5- 0.4-	Survival free from disabling stroke and reoperation to repair or replace LVAD at 2 yr (primary composite end point)	62 (46 [38–55])	7 (11[3–18])		<0.001	GR		Blo flo
Prob	0.3- 0.2-	First event that prevented patient from reaching the primary end point					tor Motor 1g	Pusher plate	
	0.1-	Disabling stroke†	15 (11 [6–17])	8 (12 [4-20])	0.78 (0.33-1.82)	0.56			
	0.0	Reoperation to repair or replace pump‡	13 (10 [5–15])	24 (36 [25-48])	0.18 (0.09-0.37)	<0.001			
	0	Death within 2 yr after implantation	44 (33 [25-41])	27 (41[29–53])	0.59 (0.35–0.99)	0.048			
		Any	72 (54 [45–62])	59 (89 [82–97])	0.38 (0.27-0.54)	< 0.001		From left ventricle	
o. at Risk ntinuous-flo LVAD Isatile-flow LVAD	^{9W} 133 59	 Hazard ratios were calculated with the use of Cox re Fisher's exact test. CI denotes confidence interval, a † Disabling stroke was defined as stroke with a Rankir ‡ Reoperation to repair or replace pump included urge 	nd LVAD left ventric n score of more than	ular assist device. 3.		he use of		ising	5



17 N Engl J Med 2009;361:2241-51.

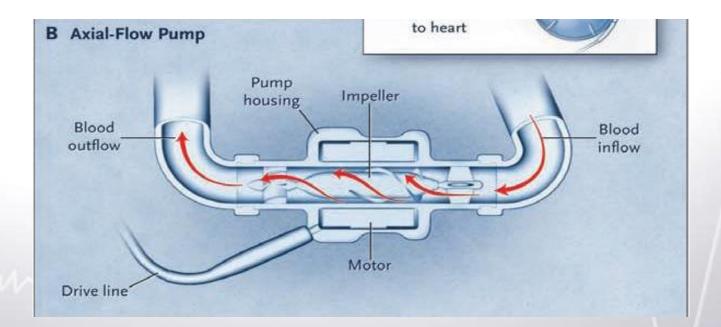
VAD : Flow nature



Pulsatile Flow Pumps

 Heartmate I – Thoratec Corporation, Pleasanton, CA, USA HeartMate 1000 Implantable Pneumatic (IP)
 HeartMate X Vented Electric (VE)

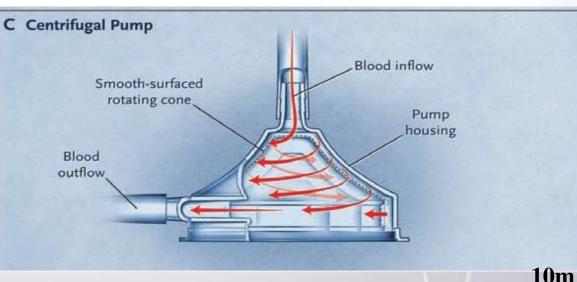
✓ **Novacor** – World Heart Corporation, Ottawa, Ontario, Canada

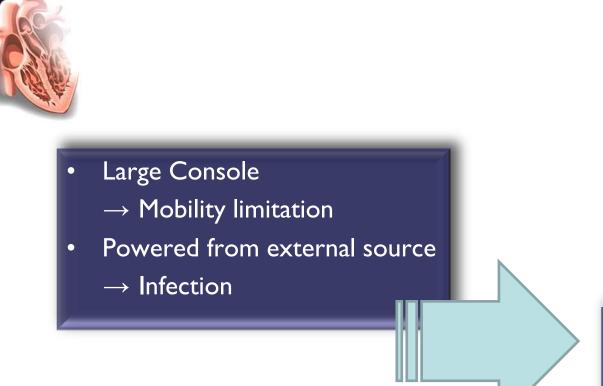


Continuous Flow Pumps

Axial Pump

- ✓ Heartmate II Thoratec Corporation, Pleasanton, CA, USA
- Micromed-Debakey Micromed Cardiovascular, Inc., Houston, TX, USA
- ✓ Jarvik 2000 Jarvik Heart, Inc., New York, NY, USA




Continuous Flow Pumps

Centrifugal Pump

- ✓ VentrAssist Ventracor, Inc., Foster City, CA, USA
- ✓ Levitronics CentriMag
- Incor Berlin Heart, Germany, EU
- ✓ DuraHeart Terumo Heart, MI
- HVAD HeartWare, Sydney, Australia
- 🗸 Eva Heart
- ✓ HeartQuest
- ✓ CorAide LVAS
- ✓ HeartMate III

Implantable

- Wearable battery pack
- Less VAD failure

Pulsatile Flow

Continuous Flow

Volume displacement + Tissue valve

Electromagnetically levitated impeller

Axial pump

Centrifugal pump bearingless

INTERMACS

- Interagency Registry for Mechanically Assisted Circulatory Support
- Facilitate the refinement of **patient selection** to maximize outcomes with current and new device options
- Identify predictors of **good outcomes** and **risk factors** for adverse events after device implantation
- Develop consensus **"best practice" guidelines** to improve clinical management by reducing short-term and long-term complications of MCS device therapy
- Guide clinical application and evolution of next-generation devices
- Use INTERMACS information to **guide improvements** in technology, particularly as next-generation devices evolve

INTERMACS patient profiles.

PROFILE-LEVEL	PRIMARY LVADs 12-09	Official shorthand (after Lynne Stevenson)		Modifier option
INTERMACS LEVEL 1	633	"Crash and burn"	IV	
INTERMACS LEVEL 2	841	"Sliding fast" on ino	IV	
INTERMACS LEVEL 3	284	Stable but ino-dependent can be hosp or home	IV ish	CURRENT VAD INDICATIONS
INTERMACS LEVEL 4	185	Resting symptoms on oral therapy at home	ambul IV	+FF frequent flyer A for arrhythmia
INTERMACS LEVEL 5		"Housebound", comfortable at rest, symptoms with minimum activity ADL	ambul IV	+FF A
INTERMACS LEVEL 6		"Walking wounded"-ADL possible but meaningful activity limited	IIIB	+FF A
INTERMACS LEVEL 7	(5, 6, 7 = 119)	Advanced Class III	III	A only

Previous studies

3rd INTERMACS

• Early-phase risk factors

- Critical cardiogenic shock
- High BUN level
- Concomitant surgery at the time of MCSD implantation
- Requirement for biventricular assistance

• Constant(late)- phase risks

- Older age
- Diabetes mellitus
- Pulmonary hypertension
- Lower serum sodium at the time of implantation
- Use of pulsatile-flow LVAD

4th INTERMACS

- 1st infection adverse event before 1momth
- INTERMACS level 1 before surgery
- BVAD
- High BUN
- Gender no difference but increased risk of neurologic events

5th INTERMACS annual report

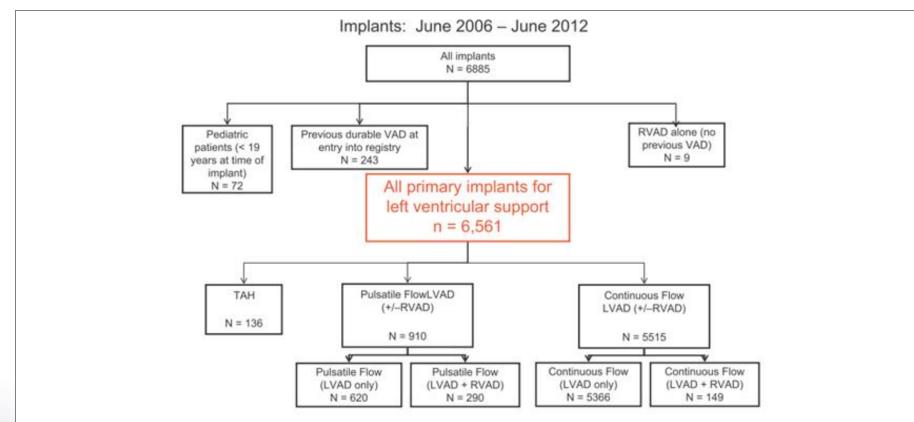
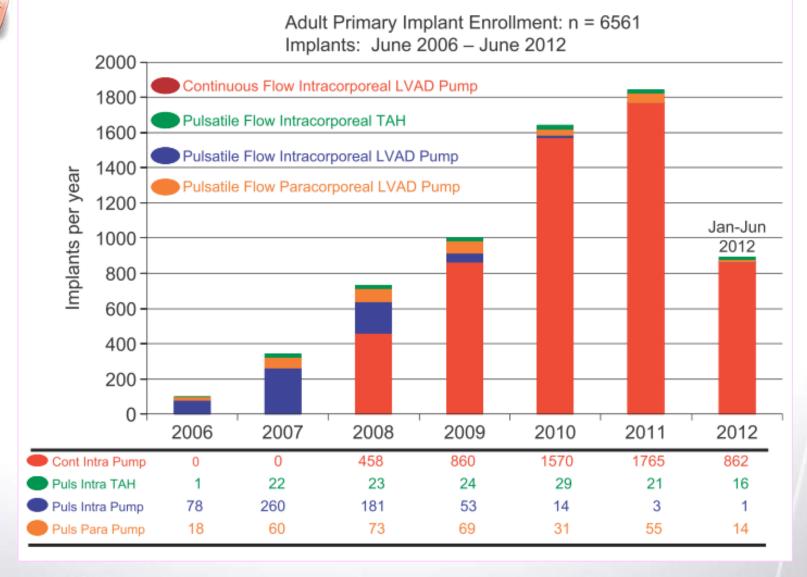
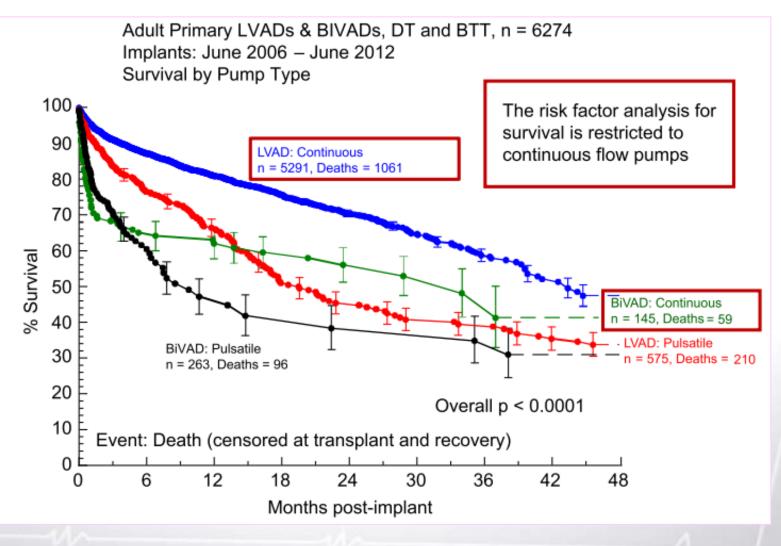



Figure Categories of patients who received durable mechanical circulatory support devices in the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) database between June 2006, and June 2012 are shown. LVAD, left ventricular assist device; RVAD, right ventricular assist device; TAH, total artificial heart.

Kirklin JK et al., J Heart Lung Transplant 2013;32:141–156 27

Table 2 Implants: June 2006-June 2012 Implant Date Period Pre 2001 2001 2012 (Jan-Jun) Total \mathbf{a} α Device Strategy at Time of Implant cosn 100 BTT Listed 1245 90 BTT Likely 994 BTT (including BTC), n = 3742 80 BTT Moderate 392 Deaths = 715 BTT Unlikely 127 70 Destination Theraphy 714 BTR 57 DT, n = 1694 60 % Survival Deaths 405 **Rescue Therapy** 33 50 **Other** 14 Total 3876 40 30 20 p < 0.0001 10 Event: Death (censored at transplant and recovery) 0 12 42 6 18 24 30 36 48 0 Months post implant

28



	Implant Date Period							
	Pre 2001		2001		2012 (Jan-Jun)		Total	
Patient Profile at Time of Implant	n	%	n	%	n	%	n	%
Unspecified	1	0.0%			6	0.6%	7	0.1%
1 Critical Cardiogenic Shock	860	22.1%	298	16.0%	148	16.6%	1307	19.7%
2 Progressive Decline	1627	41.9%	708	38.0%	329	36.7%	2664	40.1%
3 Stable but Inotrope dependent	750	19.3%	519	27.8%	246	27.4%	1515	22.8%
4 Resting Symptoms	441	11.3%	233	12.5%	117	13.0%	791	11.9%%
5 Exertion intolerant	91	2.3%	66	3.5%	27	3.0%	184	2.7%
6 Exertion limited	59	1.5%	31	1.6%	14	1.5%	104	1.5%
7 Advanced NYHA Class 3	47	1.2%	6	0.3%	8	0.8%	61	0.9%
Total	3876	100.0%	1861	100.0%	896	100.0%	6633	100.0%

Devices

Table Food and Drug Administration-Approved Devices						
Туре	Device					
Durable devices						
Continuous flow	Thoratec HeartMate II					
	Heartware HVAD					
	MicroMed DeBakey Child VAD					
Pulsatile extracorporeal	Thoratec PVAD					
	Heart Excor					
Pulsatile intracorporeal	HeartMate IP					
	Heart Mate VE					
	HeartMate XVE					
	Thoratec IVAD					
	NovaCor PC					
	NovaCor PCq					
Total artificial heart	SynCardia CardioWest					
	AbioCor TAH					
Temporary devices						
Short-term devices	Abiomed AB5000					
	Abiomed BVS 5000					
	Levitronix Centrimag					
	Biomedicus					
	Tandem Heart					

VAD : Generation

LVAD Types

lst generation:

Pulsatile, with valves, volume-displacement

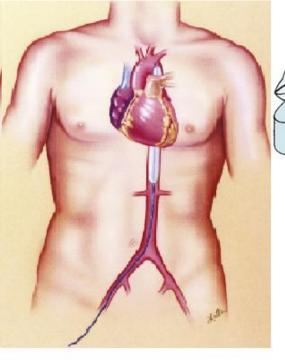
Thoratec VAD, Novacor VAD, HeartMate I VAD

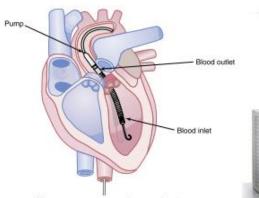
2nd generation:

Axial flow pumps Single contact bearing

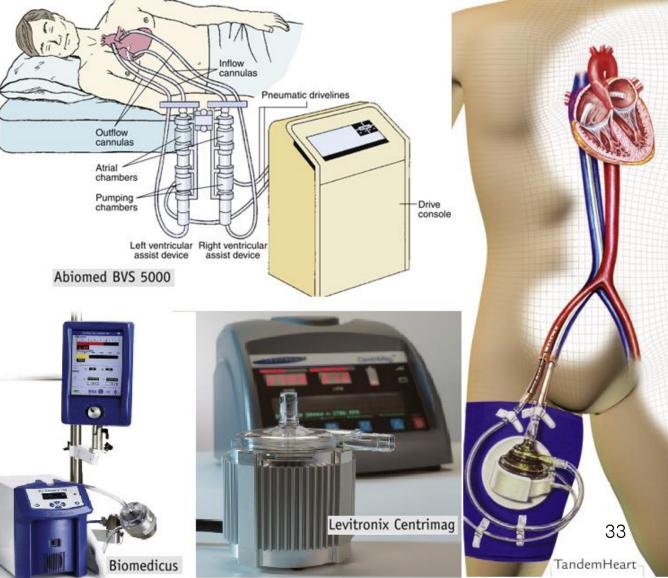
HeartMate II VAD, Micromed-DeBakey VAD, Jarvik 2000 VAD

3rd generation:


Centrifugal pumps, Non-contact bearings

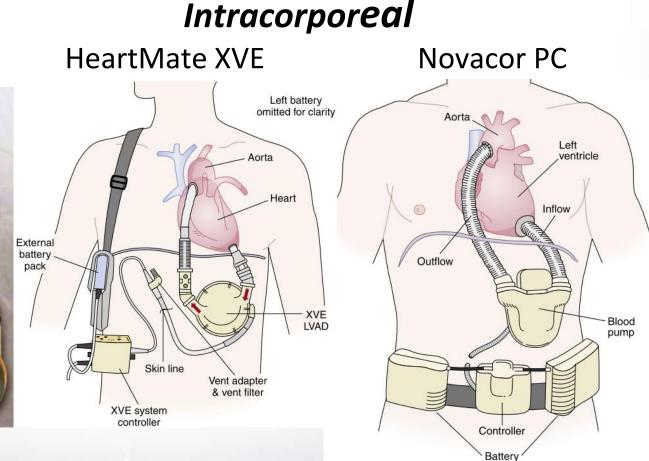

> HVAD Levacor VAD VentrAssist VAD

> > 32 **15m**



Temporary devices

Impella 2.5, 5.0, and LD devices.



Durable devices

✓ Pulsatile flow Extracorporeal

Thoratec PVAD

34

Durable devices

✓ Pulsatile flow

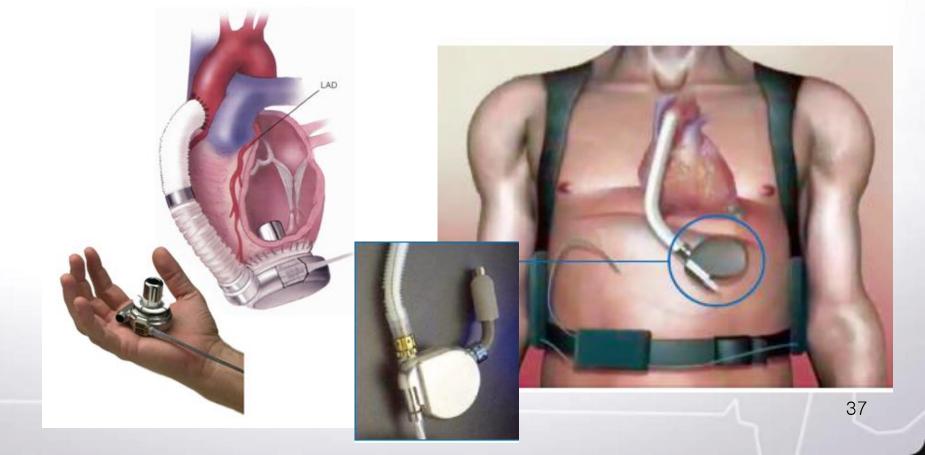
TABLE 8-3@	Pulsatile Mechanical Circulatory Support Systems for Long-Term Support						
Device Name	Manufacturer	Type of Pump₽	Type of Support₽	Pump Position.			
HeartMate XVE LAVD	Thoratec Corp, Pleasanton, CA&	Electric pulsatile pusher-plate	LVADe	Preperitoneal or+ intraperitoneal pocket+			
Thoratec PVAD₽	Thoratec Corp, Pleasanton, CA+	Pneumatic pulsatile sac-type	Biventricular or univentricular	Paracorporeal.₽			
Thoratec IVAD₽	Thoratec Corp, Pleasanton, CA+	Pneumatic pulsatile sac-type	Biventricular or univentricular	Preperitoneal pocket+			
CardioWest TAHe	SynCardia Systems, Inc, Tucson, AZ4 ³	Pneumatic pulsatile sac-type₽	Biventricular₽	Intrapericardial ²			

IVAD, intracorporeal ventricular assist device; LVAD, left ventricular assist device; PVAD, paracorporeal ventricular assist device; TAH, total artificial heart.+/

Durable devices

\checkmark Continuous flow

Javik 2000 MicroMed Debakey Child VAD HeartMate II LVAD ©2000 Texas Heart® Institute -36



Durable devices

\checkmark Continuous flow

HVAD

Levacor

Durable devices

\checkmark Continuous flow

TABLE 8-4	Continuous Flow Mechanical Circulatory Support Systems for Long-Term Support						
Device Name	Manufacturer	Type of Pump⊷	Type of Support.	Pump Position@			
HeartMate II43	Thoratec Corp, Pleasanton, CA+	Axial flow with blood-immersed bearingsरू	LVAD43	Preperitoneal pocket&			
Jarvik 2000₽	Jarvik Heart, Inc, New York, NY↔	Axial flow with blood-immersed bearingsरू	LVAD₄ ³	LV₽			
Synergy₽	CircuLite, Inc, Saddle Brook, NJ&	Axial flow with blood-immersed bearingsरू	LVAD43	Chest wall pocket↔			
INCOR₽	Berline Heart, Berlin, Germany&	Axial flow with blood-immersed bearingsरू	LVAD43	Preperitoneal pocket			
DuraHeart₽	Terumo Cardiovascular, Ann Arbor, MI&	Centrifugal flow; magnetic and 🕫	LVAD.	Preperitoneal pockete			
HVAD₄J	HeartWare, Inc, Framingham, MA4	Centrifugal flow; magnetic and hydrodynamic bearings+	LVADe	Intrapericardial ²			
Levacore ²	WorldHeart, Inc, Salt Lake City, UT	Centrifugal flow; magnetic bearings	LVADe	Preperitoneal pockete			

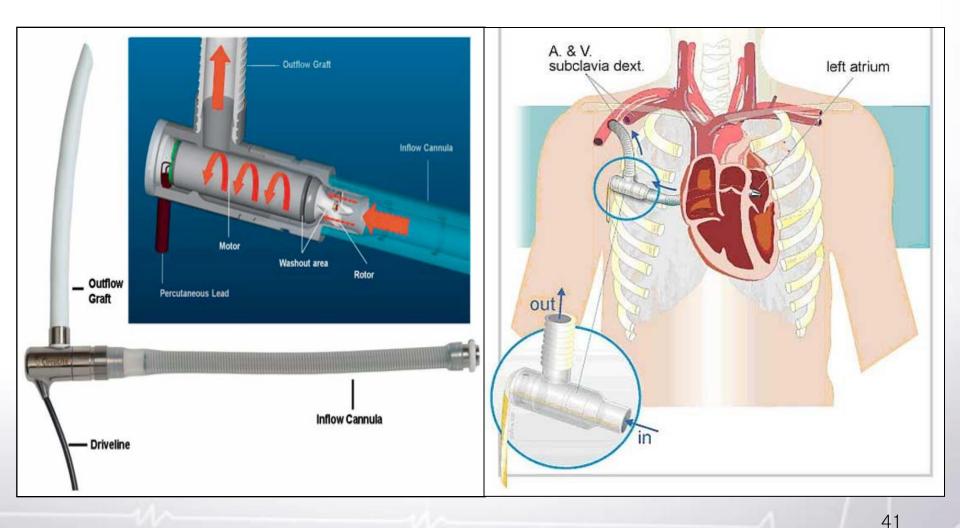
LV, left ventricle; LVAD, left ventricular assist device.4

HeartWare HVAD

Use of an Intrapericardial, Continuous-Flow, Centrifugal Pump in Patients Awaiting Heart Transplantation

Keith D. Aaronson, MD, MS*; Mark S. Slaughter, MD*; Leslie W. Miller, MD;
Edwin C. McGee, MD; William G. Cotts, MD; Michael A. Acker, MD; Mariell L. Jessup, MD;
Igor D. Gregoric, MD; Pranav Loyalka, MD; O.H. Frazier, MD; Valluvan Jeevanandam, MD;
Allen S. Anderson, MD; Robert L. Kormos, MD; Jeffrey J. Teuteberg, MD; Wayne C. Levy, MD;
David C. Naftel, PhD; Richard M. Bittman, PhD; Francis D. Pagani, MD, PhD;
David R. Hathaway, MD; Steven W. Boyce, MD; for the HeartWare Ventricular Assist Device (HVAD) Bridge to Transplant ADVANCE Trial Investigators[†]

- *Background*—Contemporary ventricular assist device therapy results in a high rate of successful heart transplantation but is associated with bleeding, infections, and other complications. Further reductions in pump size, centrifugal design, and intrapericardial positioning may reduce complications and improve outcomes.
- *Methods and Results*—We studied a small, intrapericardially positioned, continuous-flow centrifugal pump in patients requiring an implanted ventricular assist device as a bridge to heart transplantation. The course of investigational pump recipients was compared with that of patients implanted contemporaneously with commercially available devices. The primary outcome, success, was defined as <u>survival</u> on the originally implanted device, transplantation, or explantation for ventricular recovery at 180 days and was evaluated for both noninferiority and superiority. Secondary outcomes included a comparison of survival between groups and <u>functional and quality-of-life outcomes</u> and <u>adverse events</u> in the investigational device group. A total of 140 patients received the investigational pump, and 499 patients received a commercially available pump implanted contemporaneously. Success occurred in 90.7% of investigational pump patients and 90.1% of controls, establishing the noninferiority of the investigational pump (P<0.001; 15% noninferiority margin). At 6 months, median 6-minute walk distance improved by 128.5 m, and both disease-specific and global quality-of-life scores improved significantly.
- *Conclusions*—A small, intrapericardially positioned, continuous-flow, centrifugal pump was <u>noninferior to contempora-</u> neously implanted, commercially available ventricular assist devices. Functional capacity and quality of life improved markedly, and the adverse event profile was favorable.



HeartWare HVAD

- Short intergrated inflow cannula
- Small size of the pump (50mL, 140g)
 - Pericardial positioning
 - Avoidance of a pump pocket
 - Available for smaller body sized patients
 - Potential benefit of reduction in bleeding and infection
- 10L/min of flow, speed : 1800 to 4000 rpm
- New, No sufficient cilnical data

CircuLite[®] Synergy[®] Device

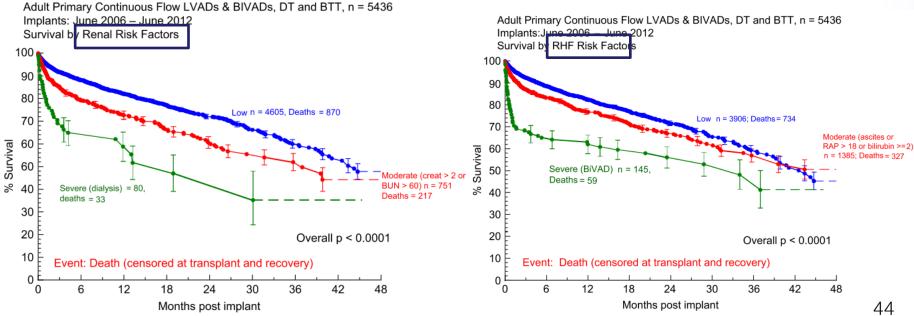
Klotz S et al., Thorac Cardiov Surg 2010; 58, Suppl. 2: S173-S178

Durable devices

✓ Total artificial heart (TAH)

SynCardia CardioWest

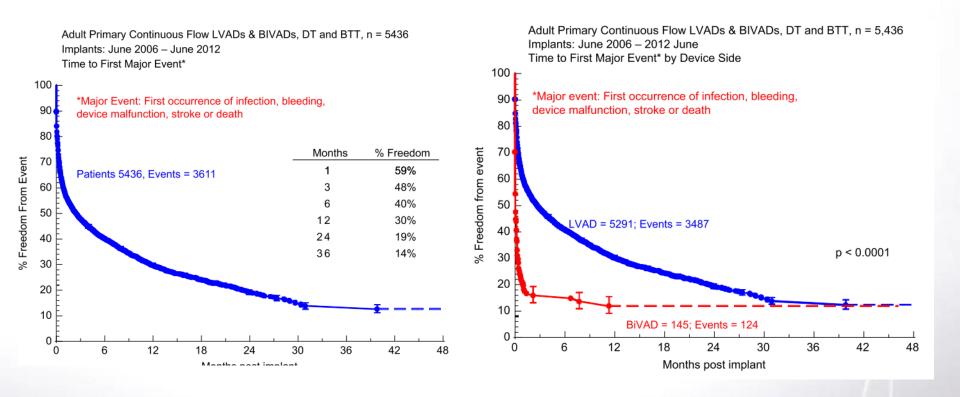
AbioCor TAH

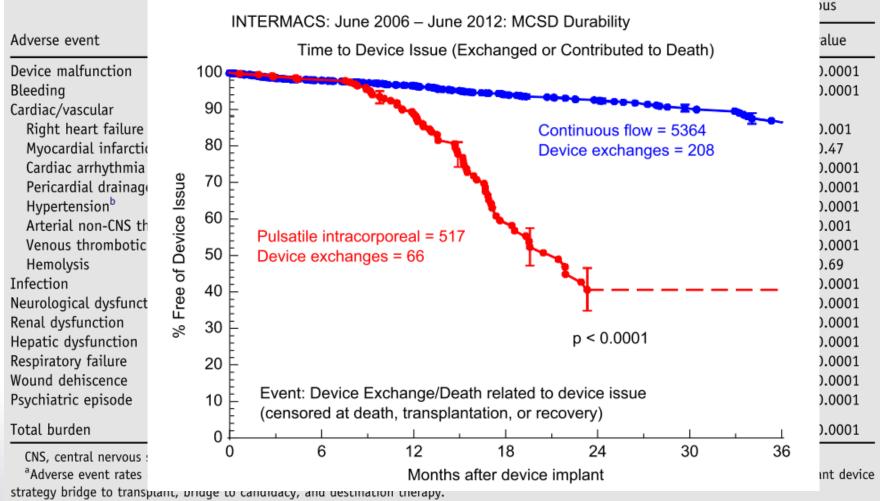

Risk factors for Death after MCS

	Early hazard	Early hazard		
Risk factors for death	Hazard ratio	p-value	Hazard ratio	<i>p</i> -value
Demographics				
Age (older)	1.69	< 0.0001		
Body mass index (higher)	1.47	< 0.0001		
Clinical status				
Ventilator	1.65	0.009		
History of stroke	1.69	0.009		
INTERMACS Level 1	2.45	< 0.0001		
INTERMACS Level 2	1.89	0.0004	1.30	0.003
Destination therapy			1.25	0.01
Non-cardiac systems				
Diabetes			1.22	0.02
Creatinine (higher)			1.10	0.008
Dialysis	2.22	0.002		
Blood urea nitrogen (higher)	1.10	< 0.0001		
Right heart dysfunction				
RVAD in same operation	3.73	< 0.0001		
Right atrial pressure (higher)	1.36	0.002		
Bilirubin (higher)	1.08	< 0.0001		
Ascites			1.32	0.05
Surgical complexities				
History of cardiac surgery			1.50	< 0.0002
Concomitant cardiac surgery	1.34	0.02		

BiVAD, biventricular assist device; BTT, bridge to transplant; DT, destination therapy; INTERMACS, Interagency Registry for Mechanically Assisted Circulatory Support LVAD, left ventricular assist device; RVAD, right ventricular assist device.

Adult Primary Continuous Flow LVADs & BIVADs, DT and BTT, n = 5436 Implants: June 2006 - June 2012 Survival by INTERMACS Level Adult Primary Continuous Flow LVADs & BIVADs, DT and BTT, n = 5436 Implants: June 2000 - June 2012 100 Survival by Age Groups 100 Levels 4-7: n = 1038 90 Deaths = 181 90 80 Age < 50 yrs: n = 1453; Deaths = 228 80 70 Level 1: n = 819 70 Deaths = 195 Age > 70 yrs, n = 658 60 Survival 60 Deaths: n = 177 Level 3: n = 1399 50 50 Deaths = 238 Age 50-64 yrs % 40 _evel 2: n = 2180 n = 2493, deaths = 505 40 Deaths = 506 30 30 Age 65-70 yrs 20 n = 832, deaths = 210 Overall p < 0.0001 20 p < 0.0001 10 Event: Death (censored at transplant and recovery) 10 0 Event: Death (censored at transplant and recovery) 6 12 18 30 36 42 0 24 48 0 12 Months post implant 6 18 24 30 36 42 0 48


Months post implant



Adverse events

^bWith current reporting, identification of hypertension with continuous-flow pumps is unreliable.

Complications

- Early
 - Bleeding
 - Right sided heart failure
 - : Cardiac output is dependent on the ability of RV
 - : Continuous collapse LV
 - \rightarrow interventricular septum diplaced LV side \rightarrow RV dilatation effect \rightarrow RV failure
 - Progressive multiorgan system failure

• Late

- Infection
 - Nosocomial or Device related
- Thromboembolism
- Failure of device

Event	Frequency	
Bleeding	48%	
Infection	18–59%	
Neurological event	10–27%	
RV failure	7–11%	
Thromboembolism	12%	
Device failure	12.8%	

Risk Scores for Mortality after VAD implantation

Variable*	OR/Risk Score	Variable†‡	Relative Risk/Risk Score	Variable§	OR/Risk Score
Platelet count \leq 148 $ imes$ 10 $^{3}/\mu$ L	7.7/7	Urine output <30 mL/h	3.9/3	Respiratory failure and sepsis	11.2/1
Serum albumin ≤3.3 g/dL	5.7/5	$\mathrm{CVP}>$ 16 mm Hg	3.1/2	Preexisting right heart failure	3.2/1
INR >1.1	5.4/4	Mechanical ventilation	3.0/2	Age at implant $>$ 65 years	3.0/1
Vasodilator therapy	5.2/4	PT >16 seconds	2.4/2	Acute postcardiotomy	1.8/1
Mean PAP ≤25 mm Hg	4.1/3	Reoperation	1.8/1	Acute infarction	1.7/1
AST $>$ 45 U/mL	2.6/2	$ m WBC>15~000/mm^3$	1.1/0		
Hematocrit ≤34%	3.0/2	Temperature >101.5°F	0/0		
BUN $>$ 51 U/dL	2.9/2				
No intravenous inotropes	2.9/2				
Destination therapy ris	k score:				
Low risk: 0 to 8		Bridge to transplantation risk score:		Bridge to transplantation risk score:	
Medium to high risk: 9 to 19		Low risk: <5		Low risk: 0	
Very high risk: >19		High risk: ≥5		High risk: ≥1	

CVP indicates central venous pressure; INR, international normalized ratio; PT, prothrombin time; PAP, pulmonary artery pressure; AST, aspartate aminotransferase; WBC, white blood cell count; and BUN, blood urea nitrogen.

*Adapted from Lietz et al.11

†Adapted from Oz et al.10

 \pm All patients met hemodynamic criteria consisting of cardiac index <2.0 L \cdot min⁻¹ \cdot m⁻² with left atrial or pulmonary capillary wedge pressure >20 mm Hg. §Adapted from Deng et al.¹²

|Includes patients with preimplantation septicemia (fever >38.5°C) and positive blood cultures who required mechanical ventilation.

Circulation. 2009;119:2225-2232

OPD F/U

- Patients and their family
 - : Intensive education (battery, driveline care, warning sign)
- Monitoring
 - : BP, volume control, Driveline care, anticoagulation adjustment (INR : 1.5-2.5)
- MCS program
 - : team approach

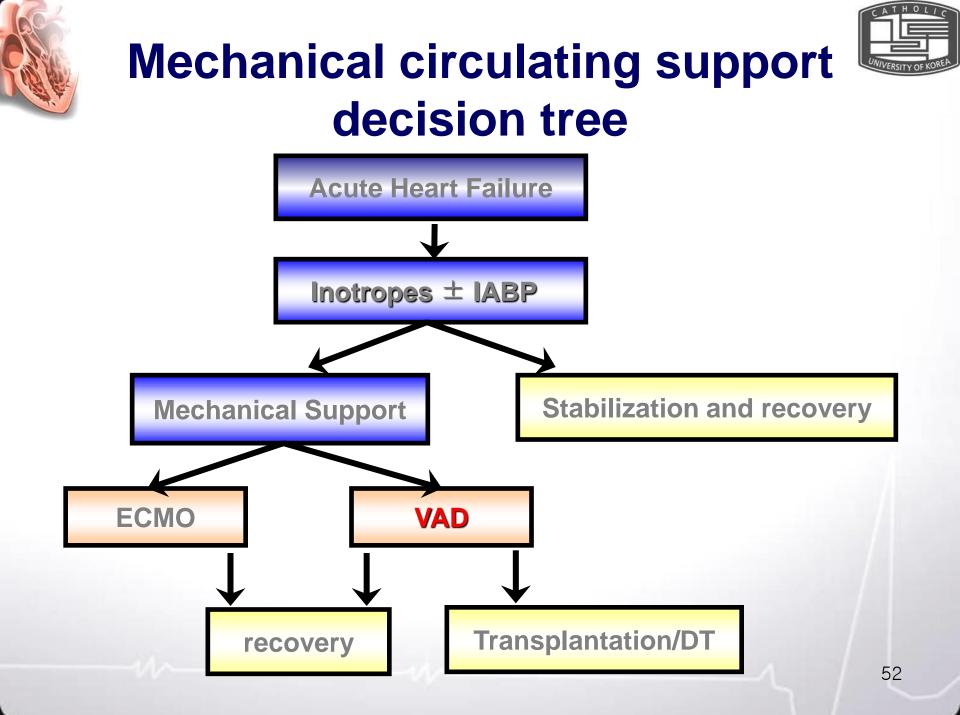
Summaries (1)

- Increased prevalence and incidence rate of HF
- Only effective treatment for end stage CHF is heart transplant.
- Much progress has been made over the last 2 decades in the field of mechanical circulatory support (MCS).
 (Extracorporeal & Implantable)

 \rightarrow Tx. Options for patients with advanced HF.

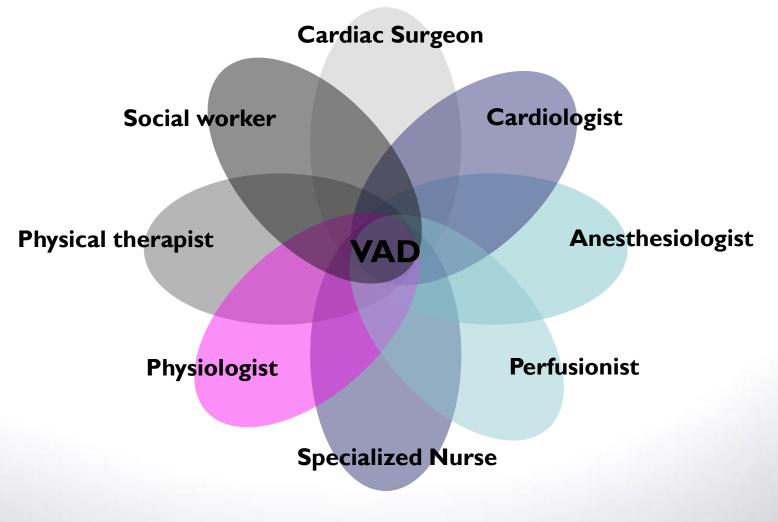
 VADs are now seen as a credible lifesaving option to support the failing heart for short- and long-term therapy.

(B to R, B to Decision, B to T and DT)



Summaries (2)

 Improved understanding of cardiac and noncardiac risk factors through prospective and retrospective analyses has optimized care for patients with end stage heart failure.


ightarrow extended survival and QOL \uparrow

- The ground work has been set for a promising future for VADs through the establishment of the INTERMACS registry, and there is continued widespread interest in improving the characterization and selection of VAD patients, as well as the timing of surgery.
 - → improving clinical outcome

Thank you very much for your attention

