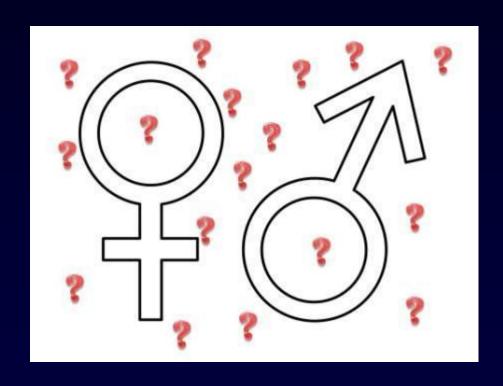
Is there gender difference in the prognosis of IHD? : Nope!

Seok-Min Kang, MD, Ph D.


Director, Heart Failure & Cardiac Wellness Center, Professor, Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea

편파 중계석

Same features in women and men

Sex

VS.

Gender

Contents

- Characteristics of women vs. men in IHD
- No sex difference evidences of clinical outcomes

In terms of

- ACS vs. Stable IHD
- STEMI vs. NSTEMI

Pre-thrombolytic era

30 – day mortality after AMI

Women (28 %)

Men (16 %)

Kannel WB, et al. Am J Cardiol. 1979;44:53-9.

GUSTO-I trial

30 – day mortality after AMI

Woodfield SL, et al. JACC. 1997;29:35-42.

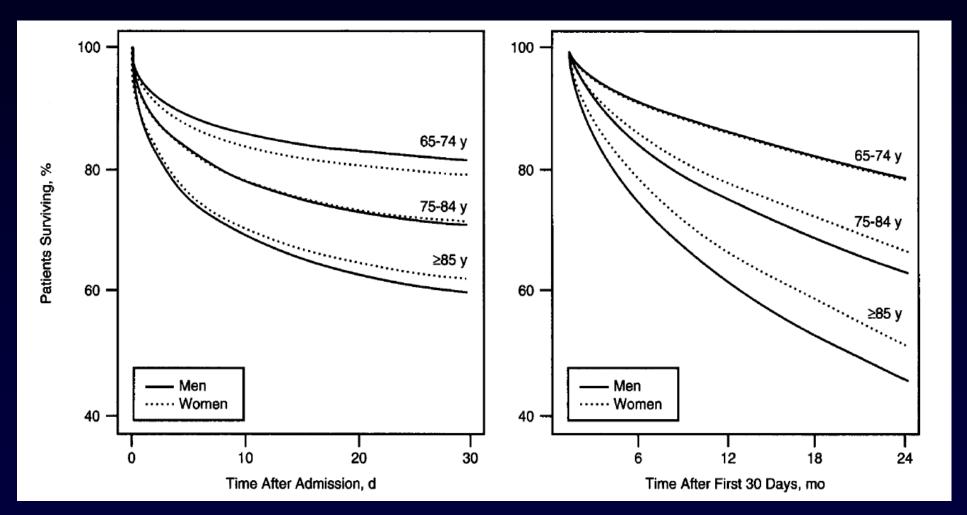
Characteristics of women vs. men in IHD

- Longer wait than men before going to the hospital
- Less likely to be given a diagnosis of AMI at admission
- Less frequently receive thrombolytic therapy
 - or undergo PCI or CABG
- Less receive evidence-based medical Tx and cardiac rehab.

Characteristics of women vs. men in IHD

- Relatively older when diagnosed with IHD
- More have comorbidities (ex. DM, HTN, MS..)
- More likely to have normal coronary arteries

30-day mortality after AMI

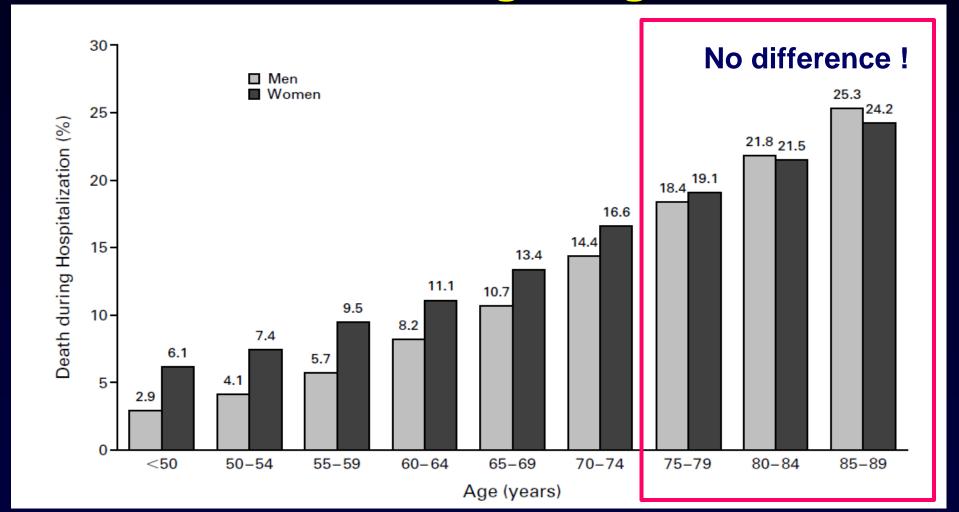

TABLE 5. 30-DAY MORTALITY AND HAZARD RATIO FOR DEATH AMONG WOMEN AND MEN WITH ACUTE MYOCARDIAL INFARCTION.*

VARIABLE	Women (N=68,108)	MEN (N=70,848)
30-Day mortality — % (no.)	21.0 (14,274)	17.2 (12,211)
Unadjusted HR (95% CI)	1.24 (1.21-1.28)	1.00
Adjusted HR (95% CI) in model	1.04 (1.01-1.07)	1.00
not including treatments†		
Adjusted HR (95% CI) in model	1.02 (0.99–1.04)	1.00
including early treatments‡		

Gan SC, et al. NEJM. 2000:343:8-15.

Gender- and age-specific survival after AMI

Udvarhelyi IS, et al. JAMA. 1992;268:2530-6.


Sex Differences in Medical Care and Early Death After Acute Myocardial Infarction

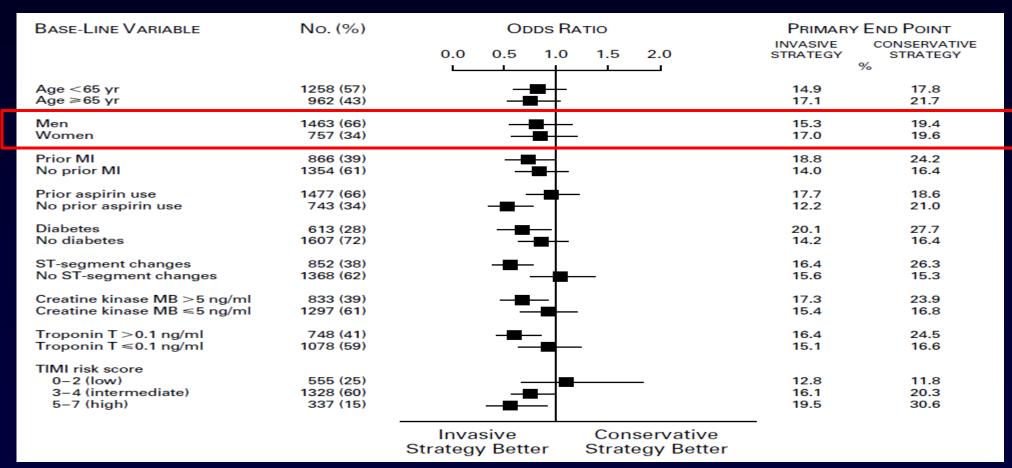
Measure/Treatment/Outcome	n	Adjusted OR (95% CI) (Women vs Men)	P
Early medical therapy			
Aspirin within 24 h	70 360	0.86 (0.81-0.90)	< 0.0001
β -Blocker within 24 h	64 681	0.90 (0.86-0.93)	< 0.0001
Invasive procedures			
Cardiac catheterization	74 769	0.91 (0.88-0.94)	< 0.0001
PCI	67 477	0.78 (0.74-0.81)	< 0.0001
CABG	67 477	0.60 (0.55-0.65)	< 0.0001
Revascularization	67 477	0.68 (0.65-0.71)	< 0.0001
Acute reperfusion and timeliness of reperfusion†			
DTN ≤30 min	2807	0.78 (0.65-0.92)	0.004
DTB ≤90 min	7673	0.87 (0.79-0.95)	0.004
Reperfusion therapy	24 742	0.75 (0.70-0.80)	< 0.0001
Primary PCI	24 742	0.83 (0.78-0.87)	< 0.0001
Fibrinolytic therapy	24 742	0.87 (0.81-0.93)	< 0.0001
In-hospital death			
Overall AMI cohort	70 105	1.04 (0.99-1.10)	0.1
STEMI subpopulation	23 015	1.12 (1.02-1.23)	0.015

Jneid H, et al. Circulation. 2008;118:2803-10.

In-hospital mortality after AMI (N=384,878) according to age

Vaccarion V, et al. NEJM. 1999:341:217-25.

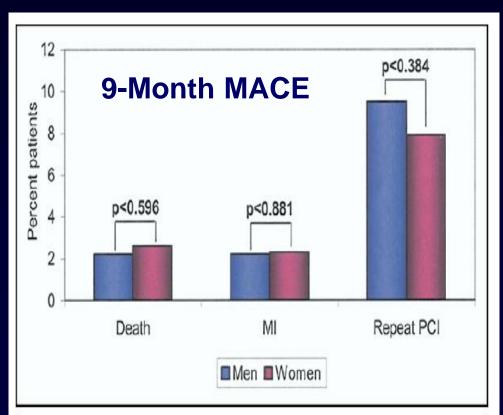
Procedural outcomes in overall post PCI population with OR for men vs. women : Acute coronary syndrome


	Men (n = 131 664)	Women (n = 68 026)	Unadjusted OR	Adjusted OR (95% CI)	Adjusted P value
In-hospital					
Mortality	1.4	2.2	0.65	0.97 (0.88-1.07)*	.52
Cardiogenic shock	1,2	1.6	0.73	0.82 (0.75-0.89)†	<.01
CVA	0.6	0.7	0.74	0.83 (0.65-1.06)‡	.13
CHF	1.3	1.8	0.71	0.80 (0.69-0.92)§	.002
Renal failure	0.6	1.1	0.57	1.13 (0.99-1.29)*	.07
Any bleeding event	2,1	4.4	0.46	0.55 (0.52-0.58)*	<.01
Any vascular event	0.7	0.9	0.70	0.69 (0.51-0.93)‡	.02

Akhter N, et al. Am Heart J. 2009:157:141-8.

COMPARISON OF EARLY INVASIVE AND CONSERVATIVE STRATEGIES IN PATIENTS WITH UNSTABLE CORONARY SYNDROMES TREATED WITH THE GLYCOPROTEIN IIb/IIIa INHIBITOR TIROFIBAN

(TACTICS TIMI-18) 6 month Death, non-fatal MI, Rehospitalization d/t ACS (NSTEMI)



Cannon CP, et al. NEJM. 2001;344:1879-97.

Comparison of Results of Percutaneous Coronary Intervention for Non-ST-Elevation Acute Myocardial Infarction or Unstable Angina Pectoris in Men Versus Women

Single-site, retrospective observational study

Elkoustaf R, et al. Am J Cardiol. 2006;98:182-6.

Impact of gender on clinical outcomes at 1 yr in patients with NSTEMI

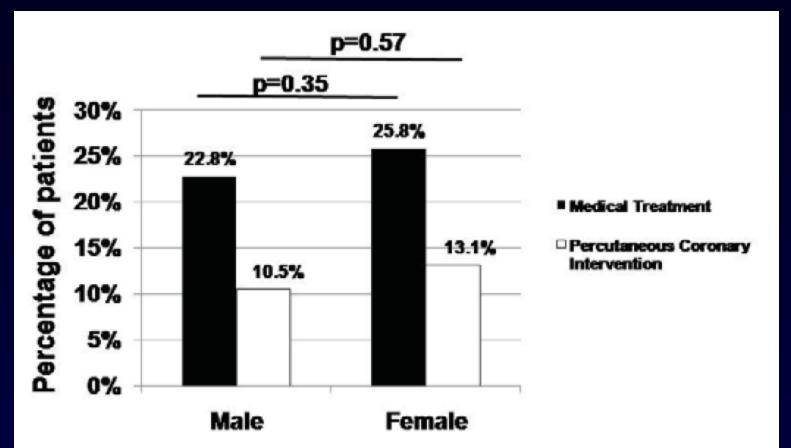


Fig. 1. Percentage of patients with major adverse cardiovascular events at 1 year, stratified by gender and management strategies (medical therapy vs PCI).

Lee LC, et al. Ann Acad Med Singapore. 2010:39:168-72.

Editorial

Is there a gender paradox in the early invasive strategy for non ST-segment elevation acute coronary syndromes?

Rachid A. Elkoustaf, William E. Boden*

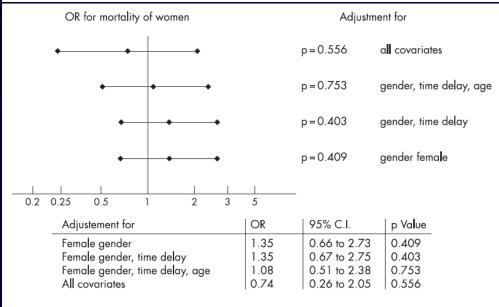
Division of Cardiology, Department of Medicine, The Henry Low Heart Center at Hartford Hospital, Hartford, CT, USA The University of Connecticut School of Medicine, Farmington, CT, USA

Elkoustaf RA, Boden WE. Eur Heart J. 2004;25:1559-61.

Impact of female gender and transradial coronary stenting with maximal antiplatelet therapy on bleeding and ischemic outcomes

Table I	V. Major adverse cardi	ac events	
	Ge	nder	
	Women (n = 298; 22%)	Men (n = 1050; 78%)	P
MACE			
30 d	10 (3.4%)	41 (3.9%)	.86
6 m	34 (11.5%)	82 (7.8%)	.06
1 y	42 (14.1%)	132 (12.6%)	.49
Death			
6 m	2 (0.7%)	2 (0.2%)	.21
1 y	3 (1.0%)	8 (0.8%)	.72
MI			
6 m	12 (4.0%)	38 (3.6%)	.73
1 y	13 (4.4%)	44 (4.2%)	.87
TVR			
6 m	23 (7.7%)	49 (4.7%)	.056
1 y	31 (10.4%)	89 (8.5%)	.30

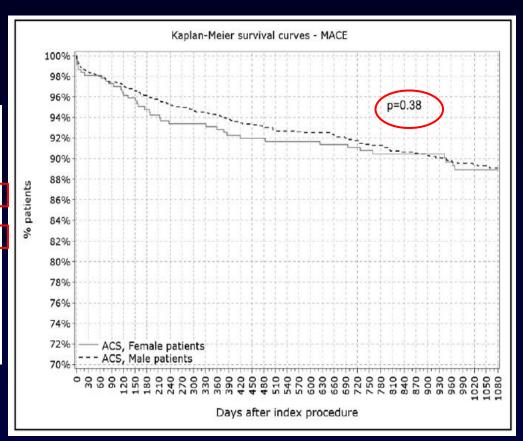
Subjects: ACS patients (n=1,348)


Female gender was NOT a predictor of adverse clinical outcomes after PCI with maximal antiplatelet therapy

Tizon-Marcos H, et al. Am Heart J. 2009:157;40-5.

The impact of gender on outcomes of patients with ST elevation myocardial infarction transported for percutaneous coronary intervention: analysis of the PRAGUE-1 and 2 studies

	Thrombolysis				Percutaneous	coronary interven	ntion	
	Women (n = 153)	Men (n = 367)	p Value	Univariate OR (95% CI)	Women (n = 159)	Men (n = 371)	p Value	Univariate OR (95% CI)
Mortality, n (%)	23 (15.0%)	33 (9.0%)	0.043	1.791 (1.01 to 3.17)	13 (8.2%)	23 (6.2%)	0.409	1.347 (0.66 to 2.73)
Reinfarction, n (%)	8 (5.2%)	23 (6.3%)	0.410	0.825 (0.36 to 1.89)	2 (1.3%)	7 (1.9%)	0.462	0.662 (0.14 to 3.22)
Stroke, n (%)	7 (5.2%)	4 (1.2%)	0.015	4.57 (1.32 to 15.8)	1 (0.6%)	1 (0.3%)	_	

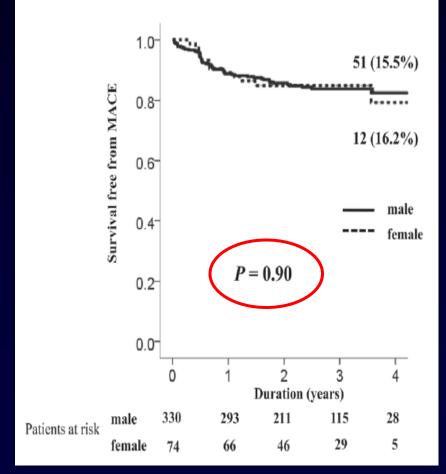


Motovska Z, et al. Heart. 2008;94

Gender Impact on Prognosis of Acute Coronary Syndrome Patients Treated With <u>Drug-Eluting Stents</u>

Multivariate analysis for ev	vents at two-year follow-up	
	HR (95% CI)	p Value
Univariate model		
Women vs men	1.05 (0.72-1.52)	0.80
Multivariate model		
Women vs men	0.921 (0.63-1.35)	0.67
Age (per year)	1.031 (1.01-1.05)	0.0002
Diabetes mellitus	1.540 (1.11-2.213)	0.009
Hypertension	1.296 (0.87-1.93)	0.19
2- vs 1-vessel disease	1.110 (0.76-1.62)	0.59
3- vs 1-vessel disease	1.801 (1.22–2.85)	0.003

Fath-Ordoubadi F, et al. Am J Cardiol. 2012;110:636-42.



Gender-Based Outcomes Among Patients With <u>Diabetes Mellitus</u> After Percutaneous Coronary Intervention in the Drug-Eluting Stent Era

Table III. Cumulative Incidence of Clinical Events

	Women $(n = 74)$	Men (n = 330)	P
MACE, n (%)	12 (16.2)	51 (15.5)	0.90
Death, n (%) Cardiac death, n (%) Noncardiac death, n (%)	5 (6.8) 2 (40) 3 (60)	10 (3.0) 4 (40) 6 (60)	0.13
ACS, n (%)	1 (1.4)	11 (3.3)	0.36
TLR, n (%)	4 (5.4)	30 (9.1)	0.31

ACS indicates acute coronary syndrome; MACE, major adverse cardiac event, and TLR, target lesion revascularization.

Ogita M, et al. Int Heart J. 2011:52;348-52.

Gender-Based Differences in the Management and Prognosis of Acute Coronary Syndrome in Korea

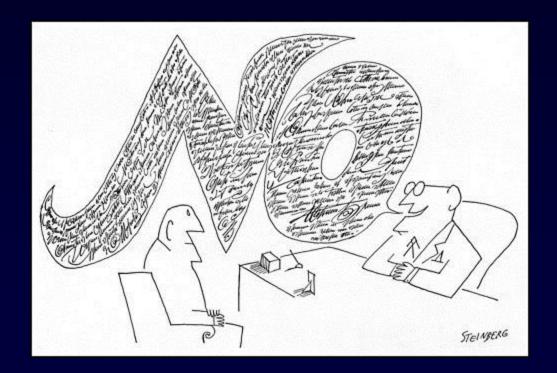
Table 3.	Progno	sis Eva	luation

	Total	Male	Female	p value
	n=6,636	n=4,394 (66.2%)	n=2,242 (33.8%)	χ²-test
Cardiovascular disease-related death (n, %)	30 (0.5)	19 (0.4)	11 (0.5)	0.738
Recurrent ACS (n, %)	38 (0.6)	25 (0.6)	13 (0.6)	0.956
Stroke (n, %)	16 (0.2)	8 (0.2)	8 (0.4)	0.170
Refractory angina (n, %)	28 (0.4)	15 (0.3)	13 (0.6)	0.156
Rehospitalization for angina (n, %)	58 (0.9)	37 (0.8)	21 (0.9)	0.695
Coronary artery bypass grafting (n, %)	8 (0.1)	4 (0.1)	4 (0.2)	0.456
Stent	Total	Male	Female	p value
Stent	n=5,119	n=3,450 (67.4%)	n=1,669 (32.6%)	χ²-test
Restenosis (n, %)	36 (0.7)	23 (0.7)	13 (0.8)	0.652
Stent thrombosis (n, %)	4 (0.1)	3 (0.1)	1 (0.1)	1.000
Repeat percutaneous coronary intervention (n, %)	65 (1.3)	45 (1.3)	20 (1.2)	0.216

ACS, Acute Coronary Syndrome.

Values are presented as means±SD or percentages.

Yu HT, et al. YMJ. 2011:52;562-8.


The bottom line is.....

- Improvements in PCI techniques
- Improvements in peri-procedural anticoagulation
- Improvements in management of CV risk factors
- etc....

Is there sex difference in the prognosis of IHD? : contemporary era

Appreciate your attention ^^

