## Genetics in cardiac arrhythmias

인제대학교 상계 백병원 송영환

## ECG and action potential (AP)



#### Ionic & molecular basis for AP



## Experiment of inherited arrhythmia (I)



#### Experiment of inherited arrhythmia (II)



#### Cardiomyocytes isolation



## Patch clamp (electrophysiologic study)











## Inherited arrhythmias

- Long QT syndrome (LQTS)
- Short QT syndrome (SQTS)
- Brugada syndrome
- Catecholaminergic polymorphic ventricular tachycardia (CPVT)

## Long QT syndrome (LQTS)



## Short QT syndrome (SQTS)



### Brugada syndrome



## Catecholaminergic polymorphic ventricular tachycardia (CPVT)



#### Genes involved in inherited arrhythmias

| Phenotype                             | Gene <sup>₄</sup>        | Protein                                                                                      | Effect of mutation                                             | OMIM identifier <sup>®</sup> |
|---------------------------------------|--------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|
| LQTS                                  | <i>KCNQ1</i> (11p15.5)   | K <sup>+</sup> voltage-gated channel, KQT-like subfamily,<br>member 1 (K <sub>v</sub> 7.1)   | Loss of function, reduced Iks                                  | 607542                       |
|                                       | <i>KCNH2</i> (7q35)      | K+ voltage-gated channel, subfamily H<br>(eag-related), member 2 (K <sub>v</sub> 11.1; HERG) | Loss of function, reduced $I_{\rm Kr}$                         | 152427                       |
|                                       | <i>SCN5A</i> (3p21)      | Na+ channel, voltage-gated, type V,<br>α subunit (Na <sub>V</sub> 1.5)                       | Impaired inactivation,<br>increased persistent I <sub>Na</sub> | 600163                       |
|                                       | <i>ANK2</i> (4q25)       | Ankyrin 2, neuronal                                                                          | Aberrant localization<br>of ion transporters                   | 106410                       |
|                                       | <i>KCNE1</i> (21q22.1)   | K+ voltage-gated channel auxiliary subunit                                                   | Reduced I <sub>Ks</sub>                                        | 176261                       |
|                                       | KCNE2 (21q22.1)          | K+ voltage-gated channel auxiliary subunit                                                   | Reduced / <sub>Kr</sub>                                        | 603796                       |
|                                       | <i>CAV3</i> (3p25)       | Caveolin 3                                                                                   | Increased persistent <i>I</i> <sub>Na</sub>                    | 601253                       |
|                                       | <i>SCN4B</i> (11q23)     | Na+ channel, voltage-gated, type IV, β subunit                                               | Increased persistent <i>I</i> <sub>Na</sub>                    | 608256                       |
|                                       | <i>SNTA1</i> (20q11.2)   | Syntrophin, α1                                                                               | Increased persistent <i>I</i> <sub>Na</sub>                    | 601017                       |
|                                       | <i>AKAP9</i> (7q21)      | A kinase (PRKA) anchor protein ( <i>yotiao</i> ) 9                                           | Reduced I <sub>Ks</sub>                                        | 604001                       |
|                                       | <i>KCNJ5</i> (11q24)     | K+ inwardly rectifying channel,<br>subfamily J, member 5 (Kir3.4)                            | Reduced I <sub>K,ACh</sub>                                     | 600734                       |
| Jervell and Lange-Nielson<br>syndrome | <i>KCNQ1</i> (11p15.5)   | K <sup>+</sup> voltage-gated channel, KQT-like subfamily,<br>member 1 (K <sub>v</sub> 7.1)   | Loss of function, reduced $I_{\rm Ks}$                         | 607542                       |
| 2                                     | <i>KCNE1</i> (21q22.1)   | K+ voltage-gated channel auxiliary subunit                                                   | Reduced I <sub>Ks</sub>                                        | 176261                       |
| Andersen syndrome                     | <i>KCNJ2</i> (17q23.1)   | K+ inwardly rectifying channel, subfamily J,<br>member 2 (Kir2.1)                            | Loss of function, reduced $I_{\rm K1}$                         | 600681                       |
| Timothy syndrome                      | <i>CACNA1C</i> (12p13.3) | Ca <sup>2+</sup> channel, voltage-dependent, L type,<br>α1C subunit (Ca <sub>V</sub> 1.2)    | Gain of function, increased <i>l</i>                           | <sub>ca</sub> 114205         |

#### Genes involved in inherited arrhythmias

| Phenotype | Gene <sup>A</sup>      | Protein                                                                                   | Effect of mutation O                                       | MIM identifier <sup>®</sup> |
|-----------|------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------|
| SQTS      | <i>KCNQ1</i> (11p15.5) | K+ voltage-gated channel, KQT-like subfamily,<br>member 1 (K <sub>V</sub> 7.1)            | Gain of function, increased $I_{\rm Ks}$                   | 607542                      |
|           | <i>KCNH2</i> (7q35)    | K+ voltage-gated channel, subfamily H<br>(eag-related).member 2 (Kv11.1; HERG)            | Gain of function, increased $I_{\rm Kr}$                   | 152427                      |
|           | <i>KCNJ2</i> (17q23.1) | K+ inwardly rectifying channel, subfamily J,<br>member 2 (Kir2.1)                         | Gain of function, increased $I_{\rm K1}$                   | 600681                      |
|           | CACNA1C (12p13.3)      | voltage-gated Ca <sup>2+</sup> channel, Ca <sub>v</sub> 1.2                               | Loss of function, reduced /ca                              | 114205                      |
|           | CACNB2 (10p12)         | Ca <sup>2+</sup> channel, voltage-dependent, 62 subunit                                   | Loss of function, reduced log                              | 600003                      |
|           | CACNA2D1 (7q21)        | Ca <sup>2+</sup> channel, voltage-dependent, $\alpha 2/\delta$ subunit 1                  | Loss of function, reduced $I_{Ca}$                         | 114204                      |
| BrS       | <i>SCN5A</i> (3p21)    | Na⁺ channel, voltage-gated, type V,<br>α subunit (Nav1.5)                                 | Loss of function, reduced $I_{\rm Na}$                     | 600163                      |
|           | GPD1L (3q22.3)         | glycerol-3-phosphate dehydrogenase 1-like                                                 | Reduced /Na                                                | 611778                      |
|           | SCN1B (19g13.1)        | Na <sup>+</sup> channel, voltage-gated, type I, β subunit                                 | Reduced /Na                                                | 600235                      |
|           | SCN3B (11q23.3)        | Na+ channel, voltage-gated, type III, β subunit                                           | Reduced / <sub>Na</sub>                                    | 608214                      |
|           | <i>MOG1</i> (17p13.1)  | RAN guanine nucleotide release factor                                                     | Reduced /Na                                                | 607954                      |
|           | <i>KCND3</i> (1p13.3)  | K+ voltage-gated channel, Shal-related subfamily,<br>member 3 (Kv4.3)                     | Gain of function, increased <i>I</i> <sub>to</sub>         | 605411                      |
|           | <i>KCNE3</i> (11q13)   | K+ voltage-gated channel auxiliary subunit                                                | Increased I <sub>to</sub>                                  | 604433                      |
|           | <i>KCNE5</i> (Xg22.3)  | K+ voltage-gated channel auxiliary subunit                                                | Increased Ito                                              | 300328                      |
|           | CACNA1C (12p13.3)      | Ca <sup>2+</sup> channel, voltage-dependent, L type,<br>α1C subunit (Ca <sub>v</sub> 1.2) | Loss of function, reduced <i>I</i> <sub>Ca</sub>           | 114205                      |
|           | CACNB2 (10p12)         | Ca <sup>2+</sup> channel, voltage-dependent, β2 subunit                                   | Loss of function, reduced Ica                              | 60003                       |
|           | <i>KCNJ8</i> (12p12.1) | K <sup>+</sup> inwardly rectifying channel, subfamily J,<br>member 8 (Kir6.1)             | Gain of function, increased $I_{K,AT}$                     | <sub>P</sub> 600935         |
| CPVT      | <i>RYR2</i> (1q42.1)   | Ryanodine receptor 2 cardiac                                                              | Gain of function,<br>increased SR Ca <sup>2+</sup> release | 180902                      |
|           | CASQ2 (1p13.3)         | Calsequestrin 2 cardiac muscle                                                            | Loss of function, reduced <i>I</i> ca                      | 114251                      |
|           | TRDN (6q22)            | Triadin                                                                                   | Impaired regulation of<br>SR Ca <sup>2+</sup> release      | 603283                      |

# Experiment of inherited arrhythmias with induced pluripotent stem cells (iPSs)





Sarcomeric actin

## Modeling LQTS with iPSs



## Modeling CPVT with iPSs





## Summary of studies with iPSs

Summary of studies of iPS-derived cardiomyocytes from patients with inherited arrhythmias

| Phenotype     | N      | AP frequency<br>(Hz) | MDP<br>(mV)            | APA<br>(mV)           | Maximal upstroke<br>velocity (dV/dt) | APD50<br>(ms)                      | APD90<br>(ms)            | Age<br>(d) | Syndrome | Reference |
|---------------|--------|----------------------|------------------------|-----------------------|--------------------------------------|------------------------------------|--------------------------|------------|----------|-----------|
| Control cells |        |                      |                        |                       |                                      |                                    |                          |            |          |           |
| Working       | 31     | 1.43 ± 0.11          | -58 ± 1.6              | 97 ± 2.7              | 44 ± 6.7                             | 145 ± 16                           | 211 ± 17                 | 20-25      |          | 27        |
| Ventricular   | 32     | 1.70 ± 0.10          | –76 ± 1.2              | 104 ± 1.1             | 28 ± 4.8                             |                                    | 414 ± 22                 | 30–32      |          | 46        |
| Ventricular   | 37     | 0.73 ± 0.04          | -63 ± 1.7              | 88 ± 2.6              |                                      | 241 ± 15                           | 320 ± 17                 | 10/20/30   |          | 25        |
| Ventricular   | 39     | 0.73 ± 0.05          | -63 ± 1.5              | 88 ± 2.4              |                                      | 239 ± 10                           | 312 ± 11.20              | 10/20/30   |          | 25        |
| Ventricular   | 40     | 1.00 <sup>A</sup>    | –66 ± 1.2              | 108 ± 1.2             |                                      | 318 ± 19                           | 373 ± 22                 | 30–90      | LQT1     | 31        |
| Ventricular   | NA     |                      |                        |                       |                                      | 221 ± 85 <sup>в</sup>              | 297 ± 118 <sup>B</sup>   | 25-30      | LQT2     | 35        |
| Ventricular   | 60     | 0.46 ± 0.10          | –57 ± 1.0              | 109 ± 3               | 9.5 ± 1.8                            | 308 ± 24 <sup>8</sup>              | 436 ± 23 <sup>8</sup>    |            | LQT2     | 33        |
| Ventricular   | 13     | 1.2 ± 0.10           | -63 ± 1.3              | 113 ± 2.4             |                                      | 265 ± 15                           | 311 ± 20                 |            | LQT2     | 34        |
| Ventricular   | 16     |                      |                        |                       |                                      |                                    | 400 ± 45 <sup>B</sup>    | 37         | LQT8     | 36        |
| Ventricular   | 15     |                      |                        |                       |                                      |                                    |                          | 25         | AD-CPVT  | 40        |
| Ventricular   | 9      | 1.00                 | -75 ± 3.0              |                       |                                      | 252 ± 29 <sup>в</sup>              |                          | 30-120     | AD-CPVT  | 41        |
| Working       | 10     | $0.64 \pm 0.06$      | -58 ± 3.0 <sup>B</sup> | 99 ± 3 <sup>B</sup>   | 6.20 ± 0.1 <sup>B</sup>              | 201 <sup>B</sup> ± 27 <sup>B</sup> |                          | 21         | AR-CPVT  | 43        |
| Patient-deriv | ed cel | ls                   |                        |                       |                                      |                                    |                          |            |          |           |
| Ventricular   | 36     | 1.00 <sup>A</sup>    | -67 ± 1.20             | 110 ± 1.3             |                                      | 481 ± 33                           | 554 ± 35                 | 30-90      | LQT1     | 31        |
| Ventricular   | NA     |                      |                        |                       |                                      | 454 ± 90 <sup>в</sup>              | 635 ± 119 <sup>в</sup>   | 25-30      | LQT2     | 35        |
| Ventricular   | 58     | 0.26 ± 0.30          | -55 ± 2                | 116 ± 4               | 10 ± 1.3                             | 440 ± 9 <sup>B</sup>               | 864 ± 8 <sup>B</sup>     |            | LQT2     | 33        |
| Ventricular   | 13     | 0.90 ± 0.10          | -62 ± 0.90             | 117 ± 1.4             |                                      | 455 ± 26                           | 516 ± 26                 | 180        | LQT2     | 34        |
| Working       | 16     |                      |                        |                       |                                      |                                    | 1,130 ± 150 <sup>B</sup> | 37         | LQT8     | 36        |
| Ventricular   | 16     | 1.00 <sup>A</sup>    | 79 ± 2.70 <sup>в</sup> |                       |                                      | 234 ± 21 <sup>B</sup>              | 293 ± 23 <sup>B</sup>    | 60-120     | AD-CPVT  | 41        |
| Working       | 20     |                      | -56 ± 1 <sup>B</sup>   | 98 ± 1.0 <sup>B</sup> | 7.60 ± 1.2 <sup>B</sup>              | 368 ± 41 <sup>B</sup>              |                          | 21         | AD-CPVT  | 43        |
| Ventricular   | 24     |                      |                        |                       |                                      |                                    |                          | 25         | AR-CPVT  | 40        |

<sup>A</sup>Experiments with electrically stimulated cells (nonspontaneous beating). <sup>B</sup>Data derived from graphs. AD, autosomal dominant; AR, autosomal recessive; AP, action potential; MDP, maximum diastolic potential; APA, action potential amplitude.

#### **R644C Mutation of Lamin A Causes Cardiac Fibroblasts Senescence**

## Background

- Lamin A/C
  - Nuclear membrane protein
  - It affects cell proliferation
  - Mutation  $\rightarrow$  cardiomyopathy, arrhythmia, progeria



### Lamin A, R644C mutation



## Methods

We generated recombinant adenoviruses and

expressed Flag-tagged wild type Lmna (LmnaWT)

and mutant Lmna R644C in fibroblasts isolated from

mouse hearts.

#### Lamin A Mutation (R644C) decreases Cell Proliferation In Mouse Cardiac Fibroblasts





#### **Cell Proliferation (Ki67 expression) is reduced** in Lamin A Mutation (R644C) In Mouse Cardiac **Fibroblasts**



\*

Lmna<sup>R644C</sup>

#### Lamin A Mutation (R644C) causes Cellular Senescence In Mouse Cardiac Fibroblasts (SA-beta galactosidase assay)



#### Lamin A Mutation (R644C) causes Nucleus Blebbing In Mouse Cardiac Fibroblasts





#### Lamin A Mutation (R644C) causes prelamin expression In Mouse Cardiac Fibroblasts





#### Lamin A Mutation (R644C) reduces Rb phosphorylation In Mouse Cardiac Fibroblasts



#### Lamin A Mutation (R644C) causes

#### dissociation of binding proteins in Mouse Cardiac Fibroblasts





#### **Hypothesis**



#### L-type Ca<sup>2+</sup> channel activation by ROSinduced activation of CaMKII.

#### Introduction

#### Cardiovascular System



#### Cardiac Myocyte







2) CDF: CaMKII mediated reaction
# **Study Plan**

- Effect of ROS on L-type Ca<sup>2+</sup> channel
- CaMKII: Involvement & mechanism
- Role of Ca<sup>2+</sup>
- Comparison with CDF
- Long term potentiation: LTP

## **Materials & Methods**

# **Chemicals and Solutions**

- Normal Tyrode solution (mM): 140 NaCl, 5.4 KCl, 0.5 MgCl<sub>2</sub>, 1.8 CaCl<sub>2</sub>, 10 glucose, and 5 HEPES, titrated to pH 7.4 with NaOH.
- Ca<sup>2+</sup>-free solution (mM): 140 NaCl, 5.4 KCl, 0.5 MgCl<sub>2</sub>, 10 glucose, and 5 HEPES, titrated to pH 7.4 with NaOH.
- The high K<sup>+</sup>, low Cl<sup>-</sup> solution (mM): 70 KOH, 40 KCl, 50 L-glutamic acid, 20 taurine, 20 KH2PO4, 3 MgCl2, 10 glucose, 10 HEPES, and 0.5 EGTA.
- The pipette solution (mM): 100 CsOH, 110 gluconic acid, 10 NaCl, 20 HEPES, 20 tetraethylammonium-Cl, 4 Mg-ATP, 5 Na-phosphocreatine, and 10 EGTA titrated to pH 7.3 with CsOH.
- Drugs were prepared as concentrated stock solutions either in distilled water or dimethyl sulfoxide.
- All experiments were conducted at room temperature (22-25 ℃).

- Male Sprgue-Dawley rat
- The removed heart was perfused with digestion solution containing collagenase through Langendorff system.
- The ventricles were cut into small pieces and individual myocytes were obtained by gentle trituration.
- The isolated cells were stored in the high K<sup>+</sup>, low Cl<sup>-</sup> solution at 4°C until used in experiments.

# Voltage Clamp Recording & Analysis

- Patch pipettes were pulled from borosilicate glass capillaries (Clark Electromedical Instruments, UK) using a pipette puller (model PP-83, Narishige Scientific Instrument Lab. Janpan) and were fire polished.
- Pipettes exhibited 3 to 4 M $\Omega$  resistance when filled with a pipette solution
- Voltage clamp was performed by using the conventional whole cell method.
- All recordings were initiated at least 10 min after rupture of membrane to allow complete dialysis of the cytoplasm.
- All the I<sub>ca,L</sub> recording were made at room temperature (22-25 °C) using Axopatch amplifier (Axon Instruments, CA).
- Signals from the patch amplifier were filtered at 1 kHz and digitized with an A/D converter (PCI-6040E, National Instrument, USA) at a sampling rate of 1 kHz and stored on a hard disc installed in a personal computer using a software made in our laboratory (R-clamp, by SY Ryu) written with Delphi 6.0 (Borland Software Co.).

## Western Blot

- The removed rat heart was perfused with specific solutions dependent on 4 each condition (+/- Ca<sup>2+</sup>, +/- H<sub>2</sub>O<sub>2</sub>) through Langendorff system for 10 min.
- The ventricles were cut into small pieces and weighed about 300g and homogenized into the same solutions as perfused on previous step.
- the total proteins was quantified by Brad-Ford assay
- 100 g of protein from the each samples was separated on 10%
  SDS-polyacrylamide gel and electrophoretically transferred onto the polyvinylidene difluoride membrane

## **Results**

# Action potential (AP) changes By H<sub>2</sub>O<sub>2</sub>



## Spontaneous SR Ca<sup>2+</sup> spark



# H<sub>2</sub>O<sub>2</sub> increases phosphorylation of CaMKII



## H<sub>2</sub>O<sub>2</sub> induced APD prolongation is mediated by CaMKII



# CaMKII



#### Mechanism of CaMKII



#### Activation of CaMKII



# Facilitation of $I_{Ca,L}$ by $H_2O_2$



## Oxidation-dependent Facilitation of I<sub>Ca,L</sub> (ODF)



#### **ODF** mediated by CaMKII



Occlusion of ODF with CDF (Ca<sup>2+</sup> dependent facilitation)



#### Ca<sup>2+</sup> Source of ODF & CDF



## Ca<sup>2+</sup> Source of ODF & CDF



## Phosphorylation in ODF & CDF (Autophosphorylation, Catalytic activity)



### Phosphorylation in ODF & CDF



ODF; Autophosphorylation-independent non-catalytic reaction

CDF; Autophosphorylation-dependent non-catalytic reaction

# The effects of kinase inhibitors related to ROS on ODF



#### Long term potentiation (LTP)



### The effct of DTT on LTP



## Oxidation-dependent Autophosphorylation of CaMKII



Langendorff perfusion with Solutions (+/- Ca<sup>2+</sup>, +/- H<sub>2</sub>O<sub>2</sub>) →Cut & grind vent. tissue →Western blot

| Ca <sup>2+</sup> | + | + |   |   |
|------------------|---|---|---|---|
| $H_2O_2$         | — | + | — | + |

P-CaMK

Actin



# The New Mechanism of CaMKII Activation



#### CaMKII Oxidation alone in LTP



#### SR Ca<sup>2+</sup> Dependency















#### Summary



#### The Effect of Duration of H<sub>2</sub>O<sub>2</sub> Perfusion on LTP


### Discussion

## Activation of CaMKII



# Interaction of CaMKII & L-type Ca<sup>2+</sup> Channel

#### Non-catalytic reaction



# The New Mechanism of CaMKII Activation

