# Super-responders for ICD primary preventions

# 가톨릭 의과대학교 신 우 승

- ISSUE OF PATIENT SELECTION
  - : more sudden cardiac death risks

- ISSUE OF ICD PROGRAMMING
  - : less ICD shock

# **ISSUE OF PATIENT SELECTION** (ICD USE FOR PRIMARY PREVENTION OF SCD)

 In 2008, a joint task force of the American College of Cardiology Foundation (ACCF)/American Heart Association (AHA)/Heart Rhythm Society (HRS) in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Cardiac Pacemakers and Antiarrhythmia Devices updated the 2002 guidelines for device-based therapy

# ACC/AHA Guideline Recommendations for Primary Prevention ICD Therapy

# 

Jessup M et al. J Am Coll Cardiol 2009;53 Epstein AE et al. Circulation. 2008;117

### **Class I Recommendations**

### ICD therapy is indicated in patients\*:

### Level of Evidence: A

- With LVEF ≤ 35% due to prior MI who are at least 40 days post-MI and are in NYHA Functional Class II or III
- With LV dysfunction due to prior MI who are at least 40 days post-MI, have an LVEF ≤ 30%, and are in NYHA Functional Class I
- Who are survivors of cardiac arrest due to VF or hemodynamically unstable sustained VT after evaluation to define the cause of the event and to exclude any completely reversible causes

### Level of Evidence: B

- With nonischemic DCM who have an LVEF ≤ 35% and who are in NYHA Functional Class II or III
- With nonsustained VT due to prior MI, LVEF < 40%, and inducible VF or sustained VT at electrophysiological study
- With structural heart disease and spontaneous sustained VT, whether hemodynamically stable or unstable
- With syncope of undetermined origin with clinically relevant,

\* Assuming patients are on chronic, optimal medical therapy and have a reasonable expectation of survival with good functional status for > 1 year.

# **ICDs for Primary Prevention**



### Eligible Population for 1° Prevention ICD



# ICD Indication Expansion for Primary Prevention

# **Ischemic CMP**

MADIT MADIT II CABG Patch MUSTT SCD-HeFT DINAMIT IRIS

## **Non-ischemic CMP**

CAT and AMIOVIRT SCD-HeFT DEFINITE

# MADIT I: ICDs Prevent Death in Ischemic LVSD

### Enrollment criteria:

- NYHA functional class I-III
- Prior myocardial infarction
- LVEF <u><</u>0.35
- Documented asymptomatic non-sustained VT
- Inducible, non-suppressible ventricular tachyarrhythmia on EP study (on procainamide)
- 196 patients enrolled

### **Results**:

• 54% relative reduction (23% absolute reduction) in the risk of death from all causes

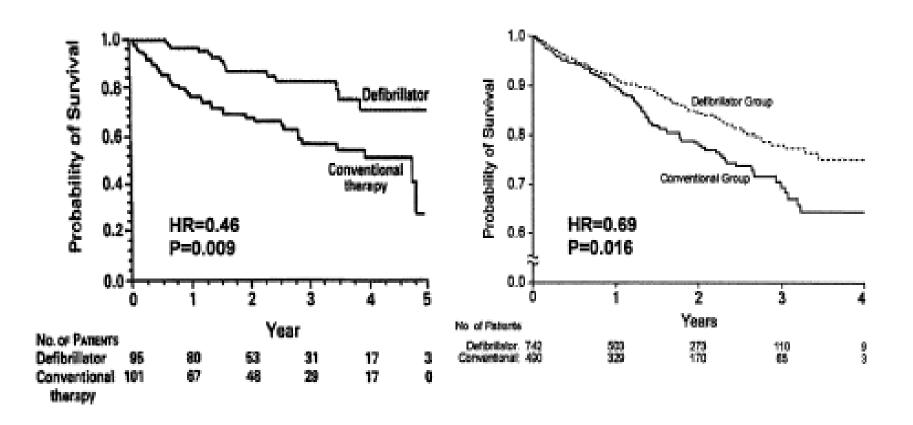
# **Evolution of studies**

| STUDY                        | YEAR | POPULATION                                                             | OUTCOME                                   | RR/ARR                         |
|------------------------------|------|------------------------------------------------------------------------|-------------------------------------------|--------------------------------|
| MUSTT<br>(EPS vs.<br>no AAR) | 1999 | •CAD<br>•LVEF <u>&lt;</u> 0.40<br>•NSVT<br>•Inducible VT               | •Death<br>(arrhythmic)<br>•Cardiac arrest | 0.24 (0.13-0.45)*<br>ARR 19.5% |
| MADIT-II                     | 2002 | •Prior MI<br>•LVEF <u>&lt;</u> 0.30<br>•NYHA I-III<br>•No EPS required | •Death (any)                              | 0.69 (0.51-0.93)<br>ARR: 5.4%  |
| SCD-<br>HeFT                 | 2005 | •NYHA II-III HF<br>•LVEF <u>&lt;</u> 0.35<br>•Includes non-ischemic    | •Death (any)                              | 0.77 (0.62-0.96)<br>ARR: 7.2%  |

Buxton AE et al. NEJM 1999;341:1882-1890. Moss AJ et al. NEJM 2002;346:877-83. Bardy GH et a. NEJM 2005;352:225-37.

# **MADIT II Trial**

### Enrollment criteria:


- NYHA functional class I-III
- Myocardial infarction at least 30 days prior to enrollment
- LVEF <u><</u>0.30
- 1232 patients enrolled

### **Results**:

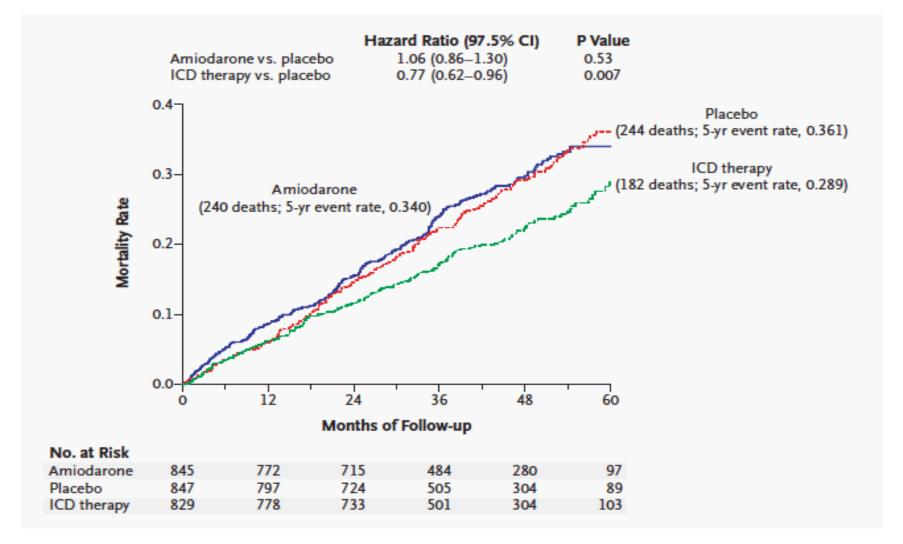
• 31% relative reduction (5.4% absolute reduction) in the risk of death from all causes

# MADIT-I (1996)

# MADIT-II (2002)



# **SCD-HeFT study**


### Enrollment criteria:

- NYHA functional class II-III
- Chronic, stable CHF with LVEF <a></a> <0.35
- 2521 patients enrolled

### **Results**:

• 23% relative risk reduction in the risk of death from all causes

# Results



# Defibrillation in Acute Myocardial Infarction Trial (DINAMIT)

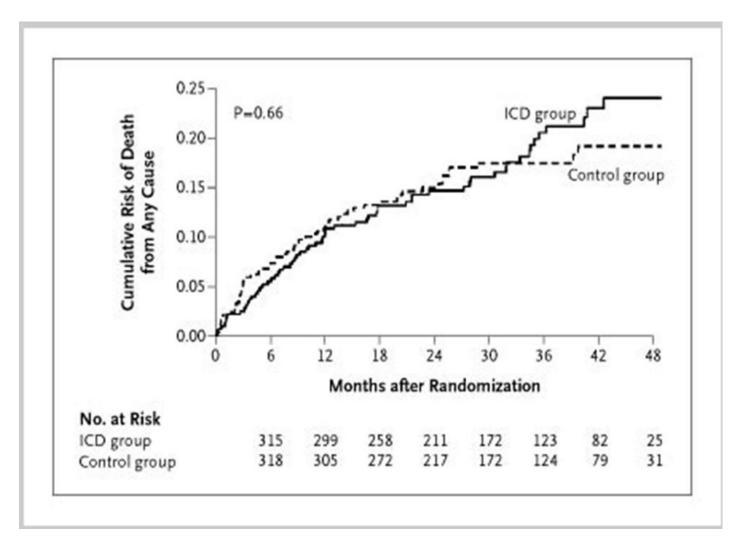
### Enrollment criteria:

- Age 18-80
- Recent MI (6 to 40 days), and low heart rate variability or high resting heart rate (Needed to have impaired autonomic dysfunction)
- LVEF <u><</u>0.35
- 653 patients enrolled

N Engl J Med 2004;351:2481-8.

# **DINAMIT: RESULTS**

### ► 332 pts in ICD group and 342 in No ICD group


| Cause of Death         | ICD Grou      | р    | Control Group |      | Hazard Ratio (95% CI)† | P Value 🔅 |
|------------------------|---------------|------|---------------|------|------------------------|-----------|
|                        | No. of Deaths | Rate | No. of Deaths | Rate |                        |           |
|                        |               | %/yr |               | %/yr |                        |           |
| Any cause              | 62            | 7.5  | 58            | 6.9  | 1.08 0.76-1.55)        | 0.66      |
| Arrhythmia             | 12            | 1.5  | 29            | 3.5  | 0.42 0.22-0.83)        | 0.009     |
| Nonarrhythmic causes   | 50            | 6.1  | 29            | 3.5  | 1.75 1.11-2.76)        | 0.02      |
| Cardiac, nonarrhythmic | 34            | 4.1  | 20            | 2.4  | 1.72 (0.99–2.99)       | 0.05      |
| Vascular, noncardiac   | 5             | 0.6  | 3             | 0.4  | 1.69 (0.40-7.06)       | 0.47      |
| Nonvascular            | 11            | 1.3  | 6             | 0.7  | 1.85 (0.68-5.01)       | 0.22      |

\* The data were analyzed with use of the Cox model. ICD denotes implantable cardioverter-defibrillator, and CI confidence interval.

† Hazard ratios are for the ICD group as compared with the control group.

‡ P values are two-sided.

# Results



# **DINAMIT Conclusions**

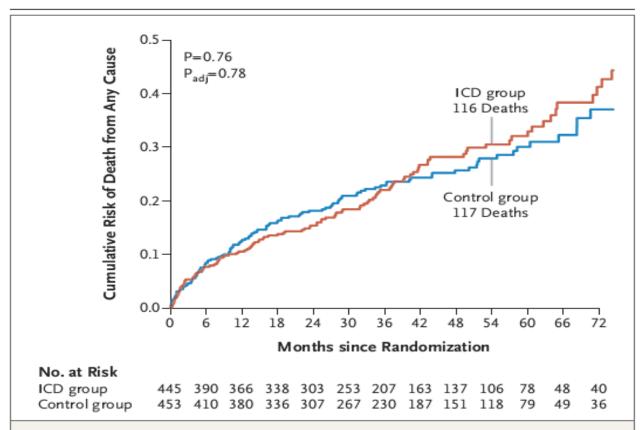
- "Prophylactic ICD therapy does not reduce overall mortality in high-risk patients who have recently had a myocardial infarction"
- "Although ICD therapy was associated with a reduction in the rate of death due to arrhythmia, that was offset by an increase in the rate of death from nonarrhythmic causes"
- Helped in framing the guideline that ICD should not be placed until at least 40 days after an MI

# **IRIS study**

- European Investigator initiated study
- Defibrillator Implantation Early after Myocardial Infarction

N Engl J Med 2006;651:1427-36.

# **IRIS** study


- Inclusion Criteria
  - enrolled 5 to 31 days after the event
  - a reduced left ventricular ejection fraction (≤40%)
  - heart rate of 90 or more beats per minute on the first available electrocardiogram (ECG) : critreion 1
  - nonsustained ventricular tachycardia (≥150 beats per minute) during Holter monitoring : criterion 2

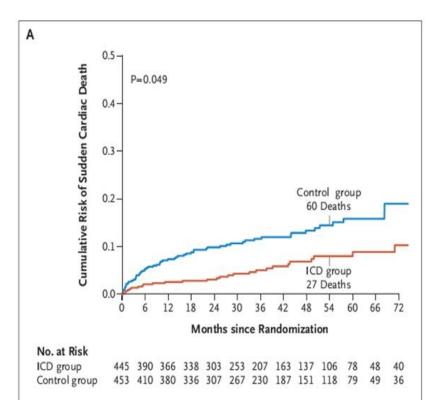
# **IRIS Results**

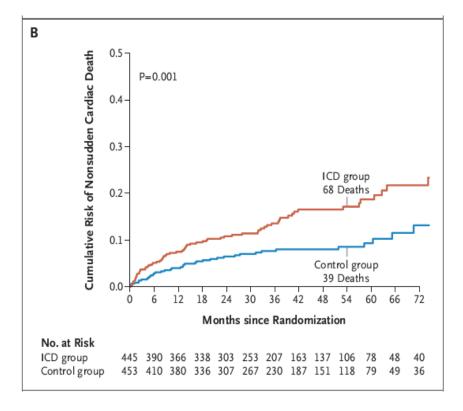
| Cause of Death                    | ICD Group      | Control Group  | Subdistribution<br>Hazard Ratio | Unadjusted<br>P Value |
|-----------------------------------|----------------|----------------|---------------------------------|-----------------------|
|                                   | no./tota       | l no. (%)      |                                 |                       |
| All patients                      |                |                |                                 |                       |
| Any cause                         | 116/445 (26.1) | 117/453 (25.8) | 1.04                            | 0.76                  |
| Sudden cardiac death              | 27/445 (6.1)   | 60/453 (13.2)  | 0.55                            | 0.049                 |
| Nonsudden cardiac death           | 68/445 (15.3)  | 39/453 (8.6)   | 1.92                            | 0.001                 |
| Noncardiac death                  | 21/445 (4.7)   | 18/453 (4.0)   | 1.23                            | 0.51                  |
| Patients meeting criterion 1 only |                |                |                                 |                       |
| Any cause                         | 78/299 (26.1)  | 82/303 (27.1)  | 1.02                            | 0.91                  |
| Sudden cardiac death              | 20/299 (6.7)   | 45/303 (14.9)  | 0.46                            | 0.003                 |
| Nonsudden cardiac death           | 44/299 (14.7)  | 27/303 (8.9)   | 1.80                            | 0.02                  |
| Noncardiac death                  | 14/299 (4.7)   | 10/303 (3.3)   | 1.52                            | 0.32                  |
| Patients meeting criterion 2 only |                |                |                                 |                       |
| Any cause                         | 21/99 (21.2)   | 20/109 (18.3)  | 1.16                            | 0.63                  |
| Sudden cardiac death              | 3/99 (3.0)     | 7/109 (6.4)    | 0.46                            | 0.25                  |
| Nonsudden cardiac death           | 13/99 (13.1)   | 6/109 (5.5)    | 2.58                            | 0.06                  |
| Noncardiac death                  | 5/99 (5.1)     | 7/109 (6.4)    | 0.74                            | 0.60                  |
| Patients meeting criteria 1 and 2 |                |                |                                 |                       |
| Any cause                         | 17/47 (36.2)   | 15/41 (36.6)   | 0.84                            | 0.62                  |
| Sudden cardiac death              | 4/47 (8.5)     | 8/41 (19.5)    | 0.36                            | 0.08                  |
| Nonsudden cardiac death           | 11/47 (23.4)   | 6/41 (14.6)    | 1.53                            | 0.39                  |
| Noncardiac death                  | 2/47 (4.3)     | 1/41 (2.4)     | 1.50                            | 0.72                  |

\* The data include all deaths during a follow-up period of up to 106 months (average, 37). ICD denotes implantable car-

# **IRIS Results**



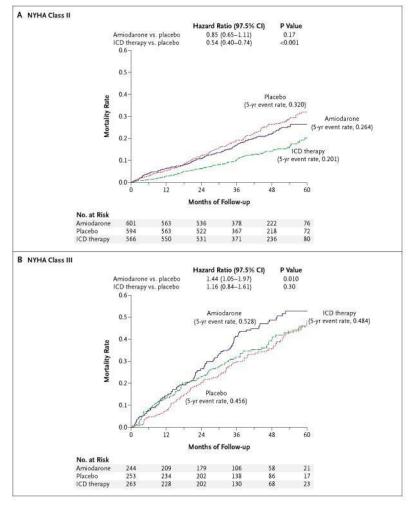

### Figure 1. Cumulative Risk of Death from Any Cause According to Study Group.


At the close of the study, definitive information about vital status was available for 897 patients. One patient was lost to follow-up. For patients who withdrew their consent, data were censored at the time of withdrawal. ICD denotes implantable cardioverter-defibrillator.

# **IRIS Results**

### Sudden cardiac death

### Non-sudden cardiac death



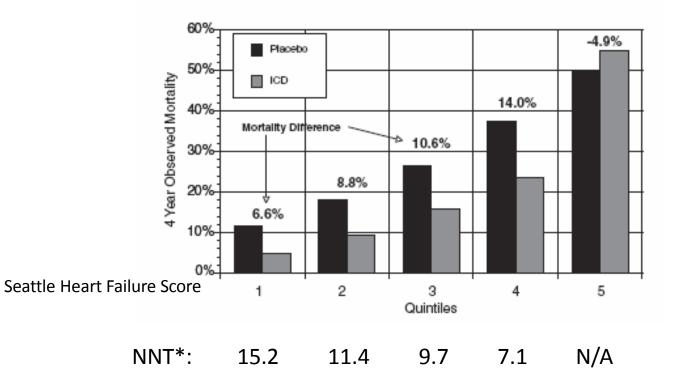



# Heart failure and ICD Benefit

### SCD-Heft

MADIT IIImage: MADIT IIImage: Made and the state and the stat




Bardy et al NEJM 2005 352:225

# SCD-HeFT sub-group study by SHFM

- SHFM(Seattle Heart Failure Model)
  - validated risk prediction model based on routinely collected clinical variables
  - age, gender, ischemic origin, systolic blood pressure, ejection fraction, medication use (angiotensin-converting enzyme inhibitor, angiotensin receptor blocker, beta-blocker, statin, and daily diuretic dose, allopurinol), serum sodium, total cholesterol, hemoglobin, percent lymphocytes, and uric acid

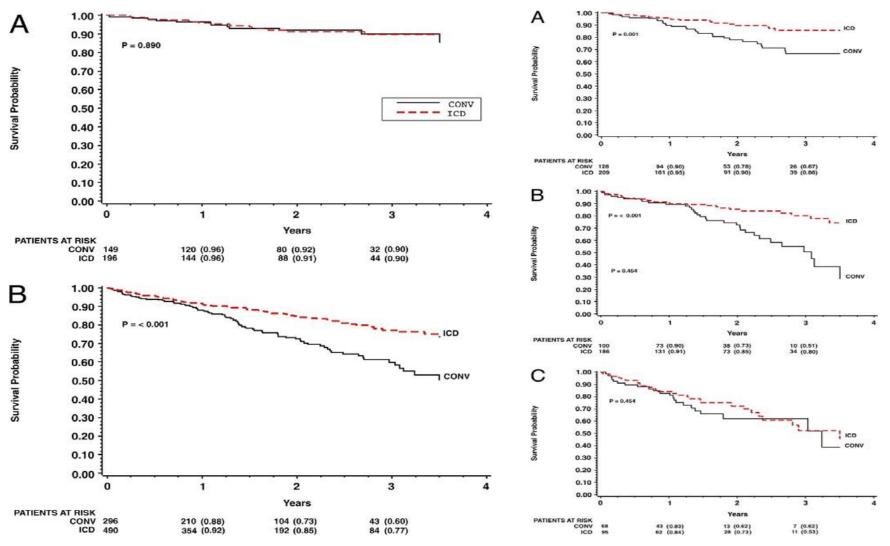
Circulation. 2009; 120:835-842.

# **Risk stratification in SCDHeft**




\*: NNT for 1yr added life over 4yrs F/U

Levi et al Circulation 2009 120:835


# MADIT II sub-group study

- Very high risk
- Cr > 2.5 mg/dl
- Urea > 50 mg/dl
- Renal disease
  - **Others : Risk Score**
- NYHA >2
- Age >70
- Urea > 26 mg/dl
- QRS >120ms
- A Fib



Goldenberg et al JACC 2008 51:288-296

# Survival by risk score

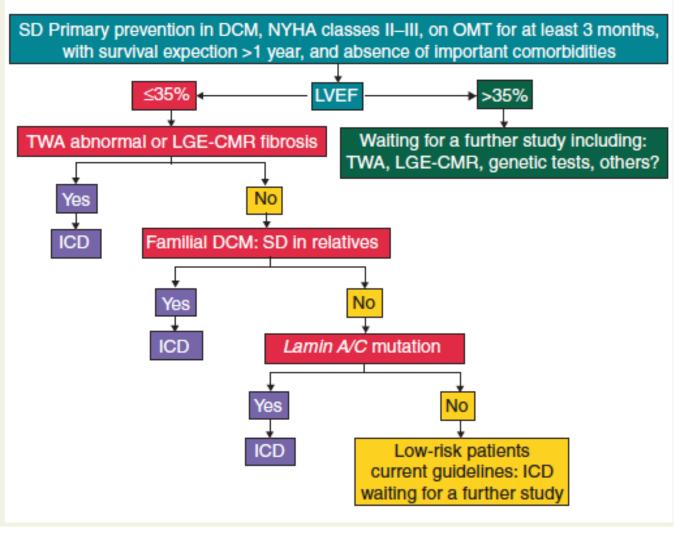


Goldenberg et al JACC 2008 51:288-296

# **Issue of patient selection**

 ICD is not beneficial for very high risk patient due to more non-sudden cardiac death in ICD group

\* Assuming patients are on chronic, optimal medical therapy and have a reasonable expectation of survival with good functional status for > 1 year.


# Primary prevention in non-ischemic DCM

### Table 2 Randomized controlled trials on ICD primary prevention in DCM patients<sup>3,38-40</sup>

| Study                                      | Inclusion criteria                        | DCM pts<br>(n) | Treatment                        | Mean FU<br>m. | Hazard ratio                 | <b>P-value</b> |
|--------------------------------------------|-------------------------------------------|----------------|----------------------------------|---------------|------------------------------|----------------|
| Cat <sup>38</sup> 2002                     | LVEF $\leq$ 30%, NYHA II-III              | 104            | OMT vs. ICD                      | 66            | -                            | 0.55           |
| AMIOVIRT <sup>39</sup> 2003                | LVEF $\leq$ 35%; NSVT; NYHA I–III         | 103            | A vs. ICD                        | 24            | -                            | 0.80           |
| DEFINITE <sup>40</sup> 2004                | LVEF $\leq$ 35%; NSVT; PVE;<br>NYHA I–III | 458            | OMT vs. ICD                      | 29            | 95% CI 0.65<br>(0.40-1.06)   | 0.08           |
| SCD-HeFT DCM<br>subgroup <sup>3</sup> 2005 | LVEF $\leq$ 35%; NYHA II–III              | 1211           | OMT vs. OMT + A vs.<br>OMT + ICD | 45.5ª         | 97.5% CI 0.73<br>(0.50–1.07) | 0.06           |

Europace 2013 15:1693-1701

# **Decision making algorithm in DCM patients**

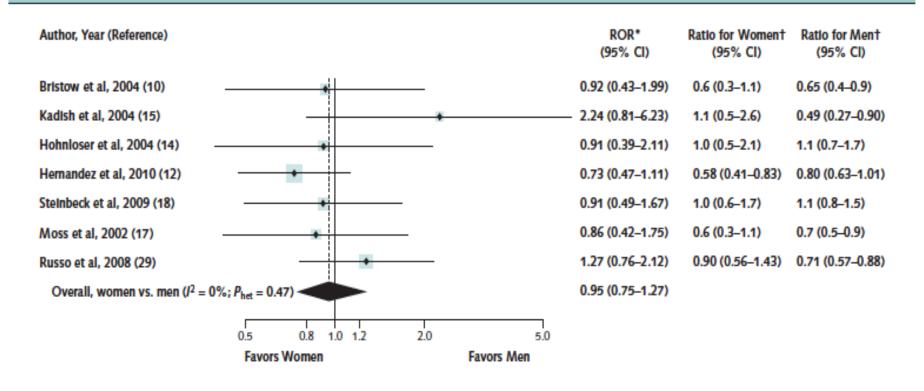


Europace 2013 15:1693-1701

Effectiveness of Implantable Cardioverter Defibrillators for Primary Prevention of Sudden Cardiac Death in Subgroups

- To examine ICD effectiveness for primary prevention of SCD across subgroups by sex, age, New York Heart Association class, left ventricular ejection fraction, heart failure, left bundle branch block, QRS interval, time since myocardial infarction, blood urea nitrogen level, and diabetes
- 27 articles described 10 randomized and 4 nonrandomized comparative studies of ICD versus no ICD treatment

Ann Intern Med. 2014;160(2):111-121


# Results

- All 10 randomized and 4 nonrandomized studies provided consistent and precise findings of a statistically significant **benefit of ICD** to reduce all-cause mortality rates
- The 10 studies that conducted subgroup analyses did not support a statistical difference in the benefit of ICD for all-cause mortality across subgroups on the basis of age, sex, race or ethnicity, NYHA class, LVEF, heart failure, LBBB, QRS interval, heart disease, time since MI, previous coronary revascularization, time since coronary revascularization

### Supplement Figure 2. Random-Effects Model Meta-analysis of ICD vs. No ICD for All-Cause Mortality

| Study                                                                                                                                                                                                                                                                       | Comparator       | Max f/up                                                                                  | Mean f/u                                                                                                           | p*               |              | HR (95% CI)                                                                                                                                                                                                                                                    | n/N<br>ICD                                                                                                                | No ICD                                                                        | Quality                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|
| COMPANION (Bristow 2004) B†<br>MADIT II (Moss 2002)§<br>AMIOVIRT (Strickberger 2003)<br>MADIT (Moss 1996)<br>DEFINITE (Kadish 2004)<br>DINAMIT (Hohnloser 2004)<br>CABG-Patch (Bigger 1997)<br>IRIS (Steinbeck 2009)<br>SCD-HEFT (Bardy 2005) A<br>SCD-HEFT (Bardy 2005) B† | No ICD<br>No ICD | 1000 d<br>1000 d<br>4 y<br>52 m o<br>5 y<br>5 y<br>4 y<br>4 y<br>6 y<br>5 y<br>5 y<br>7 y | [~1.3 y]<br>[~1.3 y]<br>1.7 y<br>~2.0 y<br>2.3 y<br>2.4 y<br>2.5 y<br>2.7 y<br>3.1 y<br>[3.8 y]<br>3.8 y]<br>5.5 y |                  |              | 0.64 (0.48, 0.86)<br>0.81 (0.63, 1.05)†‡<br>0.69 (0.51, 0.93)<br>0.87 (0.29, 2.58)‡<br>0.46 (0.26, 0.82)<br>0.65 (0.40, 1.06)<br>1.08 (0.76, 1.54)<br>1.03 (0.75, 1.41)<br>1.04 (0.81, 1.34)<br>0.77 (0.62, 0.96)<br>0.74 (0.61, 0.90)†‡<br>0.71 (0.34, 1.46)‡ | 105/595<br>105/595†<br>105/742<br>6/51<br>15/95<br>28/229<br>62/332<br>101/446<br>116/445<br>182/829<br>182/829†<br>13/50 | 131/617*<br>97/490<br>7/52<br>39/101<br>40/229<br>58/342<br>95/454<br>117/453 | Good<br>Good<br>Fair<br>Good<br>Fair<br>Good<br>Good |
| Summary estimate<br>(with CABG-Patc<br>(with IRIS, DINA<br>(with IRIS, DINA                                                                                                                                                                                                 | :h; n=8)         | 10)                                                                                       |                                                                                                                    | 25 0.5 0.8 1 1.5 | 2 3          | 0.73 (0.62, 0.87) P<0.<br>0.76 (0.65, 0.91) P=0.                                                                                                                                                                                                               | 001   <sup>2</sup> = 0%<br>001   <sup>2</sup> = 369<br>002   <sup>2</sup> = 449<br>009   <sup>2</sup> = 519               | 6 %<br>6 %                                                                    |                                                      |
|                                                                                                                                                                                                                                                                             |                  |                                                                                           |                                                                                                                    | Favors ICD Fa    | avors No ICD |                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                               |                                                      |

*Figure 1.* Men vs. women: RORs of implantable cardioverter defibrillators vs. no implantable cardioverter defibrillators for all-cause mortality.



### *Figure 2.* Younger vs. older subgroups: RORs of implantable cardioverter defibrillators vs. no implantable cardioverter defibrillators for all-cause mortality.

| Author, Year (Reference)                       | Comparison                   |                               | ROR*<br>(95% Cl)   | Ratio for<br>Younger Cohorts <del>‡</del><br>(95% Cl) | Ratio for<br>Older Cohorts‡<br>(95% CI) |
|------------------------------------------------|------------------------------|-------------------------------|--------------------|-------------------------------------------------------|-----------------------------------------|
| Age <65 y vs. older cohorts                    |                              |                               |                    |                                                       |                                         |
| Chan et al, 2009 (11)                          | <65 y vs. ≥65 y              |                               | 1.14 (0.60–2.15)   | 0.74 (0.43–1.28)                                      | 0.65 (0.47-0.90)†                       |
| Bristow et al, 2004 (10)                       | ≤65 y vs. >65 y              |                               | 0.86 (0.44–1.68)   | 0.6 (0.3–1.0)                                         | 0.7 (0.5–1.0)                           |
| Kadish et al, 2004 (15)                        | <65 y vs. ≥65 y              |                               | — 1.17 (0.41–3.29) | 0.7 (0.3–1.4)                                         | 0.6 (0.3–1.2)                           |
| Steinbeck et al, 2009 (18)                     | <65 y vs. ≥65 y              |                               | 0.90 (0.52–1.58)   | 0.9 (0.6–1.5)                                         | 1.1 (0.8–1.5)                           |
| Bardy et al, 2005 (8)                          | <65 y vs. ≥65 y              |                               | 0.79 (0.55–1.13)   | 0.68 (0.50-0.93)                                      | 0.86 (0.62–1.18)                        |
| Goldenberg and Moss, 2007 (25)                 | <65 y vs. ≥65 y              |                               | 1.20 (0.66–2.18)   | 0.79 (0.48–1.29)                                      | 0.66 (0.47–0.91)†                       |
| Overall, age <65 y vs. older (J <sup>2</sup> = | 0%; P <sub>het</sub> = 0.83) |                               | 0.93 (0.73–1.20)   |                                                       |                                         |
|                                                |                              |                               |                    |                                                       |                                         |
| Comparisons of other cohorts (some             | studies repeated)            |                               |                    |                                                       |                                         |
| Hohnloser et al, 2004 (14)                     | <60 y vs. ≥60 y —            | *                             | 0.75 (0.31–1.83)   | 0.9 (0.4–1.9)                                         | 1.2 (0.8–1.9)                           |
| Moss et al, 2002 (17)                          | <60 y vs. ≥60 y —            |                               | 0.67 (0.29-1.55)   | 0.50 (0.20-0.90)                                      | 0.66 (0.51–1.10)†                       |
| Moss et al, 2002 (17)                          | <70 y vs. ≥70 y              | *                             | 1.09 (0.64–1.87)   | 0.70 (0.47–1.03)†                                     | 0.64 (0.45–0.95)                        |
| Hernandez et al, 2010 (12)                     | 65–74 y vs. 75–84 y          |                               | 0.81 (0.54–1.22)   | 0.65 (0.47-0.89)                                      | 0.80 (0.62–1.03)                        |
| Chan et al, 2009 (11)                          | <75 y vs. ≥75 y              |                               | 1.27 (0.72–2.24)   | 0.75 (0.51–1.10)†                                     | 0.59 (0.39–0.90)                        |
| Huang et al, 2007 (26)                         | <75 y vs. ≥75 y              |                               | 1.11 (0.55–2.23)   | 0.62 (0.54-0.88)                                      | 0.56 (0.29–1.08)                        |
|                                                | 0.25                         | 0.5 0.75 1.0 1.25 2.0         | 3.0                |                                                       |                                         |
|                                                | Favors You                   | Inger Cohorts Favors Older Co | horts              |                                                       |                                         |

# Summary

- Implantable cardioverter defibrillator therapy for primary prevention of SCD versus no ICD therapy shows benefit with regard to mortality and SCD
- Weak evidence for all-cause mortality in subgroups of sex, age, and QRS interval does not show differences

- Exploring about potentially predicting marker in non-ischemic DCM patients
- ICD is not beneficial for very high risk patient due to more non-sudden cardiac death in ICD group

# Can we select more effectively?

- Heart rate variability
- T-Wave alternans
- QRS fractionation
- Genetic analysis
- Time dependent profiling