Differential perfusion and regurgitation of pulmonary artery ; does it matter?

Division of Pediatric Cardiology Department of Pediatrics Seoul National University Children's Hospital

Kim, Gi Beom

2014.4.19

## Heart and Lung



### Relationships among two ventricles and two great arteries



The heart is a helix that contains an apex

(Ho SY et al. 2006 Heart) Continuity of superficial muscle among RV, LV and great arteries

Ao

PT

## Lung perfusion in this patient?

s/p DORV with subaortic VSD, M/13 month-old





| Upper  |
|--------|
| Middle |
| Low    |
| Total  |

| LT   | RT   |
|------|------|
| 7.0  | 13.4 |
| 8.7  | 20.0 |
| 5.5  | 25.3 |
| 41.3 | 58.  |



|        | Pressure<br>Resistance |      |  |
|--------|------------------------|------|--|
|        |                        |      |  |
|        | LT                     | RT   |  |
| Jpper  | 7.0                    | 13.4 |  |
| liddle | 18.7                   | 20.0 |  |
| OW     | 15.5                   | 25.3 |  |
| otal   | 41.3                   | 58.7 |  |

## s/p TOF, 39/ Male



## Cardiac MRI, s/p TOF, 39/ Male



- 1. Severe PR
  - PR fraction = 62.3%
  - 2. RV severe dilatation
    - RV indexed EDV
    - = <mark>403.8</mark> ml/m<sup>2</sup>
  - 3. RVOT aneurysmal change

## Cardiac MRI, s/p TOF, 39/ Male



- 1. LPA focal tight stenosis
- 2. Lung perfusion
  - Right 85.6% : Left 14.4%

|         | Forward<br>Volume | Reverse<br>Volume | Net Forward<br>Volume | Regurgitation<br>Fraction, % |
|---------|-------------------|-------------------|-----------------------|------------------------------|
| RPA     | 139.5             | 88.9              | 50.7                  | 63.6                         |
| LPA     | 17.7              | 9.0               | 8.5                   | 51.7                         |
| RPA+LPA | 157.2             | 97.9              | 59.2                  | 62.3                         |
| MPA     | 153.0             | 136.8             | 16.3                  | 89.4                         |

## Affected Disease Category

**Differential perfusion** 

**Differential regurgitation** 

- Branch PA size discrepancy
  Intrapericardial PA agenesis
- Segmental PA stenosis
- CHD with MAPCAs
- Post-op TGA after Jatene op.

- Post-op TOF
- Truncus arteriosus

## The effect of chronic PR on RV



#### (Hadhad F et al. 2008 Circulation)

## Differential regurgitation of pulmonary artery

- Toronto Children's Hospital
- N = 22
- Age: (3.5~17.2) years
- TOF: 19, PA•VSD: 3





(Kang IS et al. 2003 Circulation)

## Differential regurgitation of pulmonary artery



(Kang IS et al. 2003 Circulation)

## Differential regurgitation of pulmonary artery

#### Conclusions

: PR after repair of TOF is commonly associated with differential regurgitation in the branch pulmonary arteries, which is usually greater in the LPA. Although the cause of this disparity requires further investigation, those patients with a significant unilateral contribution to total PR may be amenable to localized techniques to reduce regurgitation.

(Kang IS et al. 2003 Circulation)

# Differential branch PA regurgitation vs PA anatomy, pul. vascular resistance

- Children's Hospital of Philadelphia
- 76 patients (2003-2006), mean age: 12.6±6.9 (0.1~35.5) years
- retrospective : cardiac MRI and cardiac cath. data





### **Differential branch PA regurgitation** vs PA anatomy, pul. vascular resistance



Increased PR fraction of larger versus smaller branch PA (39% vs. 21%, p<0.001)

# Differential branch PA regurgitation vs PA anatomy, pul. vascular resistance



Differential Branch PA RF strongly correlated with differential branch PA resistance

# Differential branch PA regurgitation vs PA anatomy, pul. vascular resistance

Conclusions: BPA RF is a function of the relative PVR and the presence of BPA stenosis or size discrepancy. Contrary to prior reports, the LPA RF was only elevated in patients with relatively equal-sized BPAs. In the setting of BPA stenosis or size discrepancy, net flows will not identify unilateral increases in PVR. Therefore, measuring the differential RF is an important tool for screening patients for unilateral increases in PVR, which can affect the indication and timing for repair of BPA stenosis.

# Differential branch PA regurgitation vs PA anatomy



#### **Regurgitant Fraction (%)**

| Case | MPA  | LPA  | RPA  |
|------|------|------|------|
| 1    | 33.7 | 44.9 | 25.2 |
| 2    | 16.4 | 18.6 | 14.9 |
| 3    | 28.8 | 30.4 | 26   |

#### (Chern MJ et al. 2012 Comput Math Methods Med)

### Numerical Study for Blood Flow in Pulmonary Arteries after Repair of Tetralogy of Fallot



- The blood flow is influenced by
- bifurcation angles
- geometry of PA
- The regurgitation
  - happens first in LPA
    due to the small angle
    between LPA and MPA

(Chern MJ et al. 2012 Comput Math Methods Med)

## Differential perfusion of pulmonary artery



정상 Rt. : Lt. = 55 : 45

(Fathlal A. 2010 Heart views)



| LUNG   | LT   | RT   |
|--------|------|------|
| Upper  | 11.0 | 6.8  |
| Middle | 14.9 | 33.3 |
| Low    | 8.7  | 25.3 |
| Total  | 34.6 | 65.4 |

# The effect of differential pulmonary perfusion on lung

- Pulmonary hypertension in contralateral PA
  right ventricular hypertrophy
- Hemoptysis from systemic artery collaterals to the hypo-perfused lung
- Poor development of hypo-perfused lung and chest

# The effect of differential pulmonary perfusion on lung

- Left intrapericardial PA agenesis
- Male/33 month-old





# Chronic effects of differential pulmonary perfusion on lung

Intrapericardial unilateral PA agenesis (1991-2008, SNUCH)



## How to measure differential pulmonary perfusion?

Lung perfusion scan or cardiac MRI for <u>quantitative</u> measurements!

- PA segmental stenosis
  - CHD with MAPCAs
  - Williams syndrome
  - Alagille syndrome
- Branch PA size discrepancy
  - unilateral PA agenesis
- Post-op TGA after Jatene op.



(Sridharna S et al 2006 Heart)

Segmental branch level : Lung perfusion scan >> MRI

## How to measure differential pulmonary perfusion?

Cardiac CT, MRI or catheter-based angiography for <u>anatomic</u> evaluation



#### Segmental branch level : Catheter-based angiography >> CT, MRI

#### Differential perfusion and regurgitation of pulmonary artery ; does it matter?

#### It does matter !!

- Relationships between 2 ventricles and 2 great arteries !
- Over-perfusion versus under-perfusion of branch PA
  - poor development of hypo-perfused lung and chest pulmonary HTN, hemoptysis, etc
- Excessive regurgitation from branch PA
  - $\rightarrow$  RV volume overloading  $\rightarrow$  RV failure
  - → LV failure, arrhythmias, sudden death, etc
- Differential perfusion and regurgitation after TOF repair
  - Depend on PA anatomy, pulmonary vascular resistance
  - Need multi-modality diagnostic tests : echocardiography, lung perfusion scan, CT, MRI, cardiac cath. etc.

## Thank you for attention !