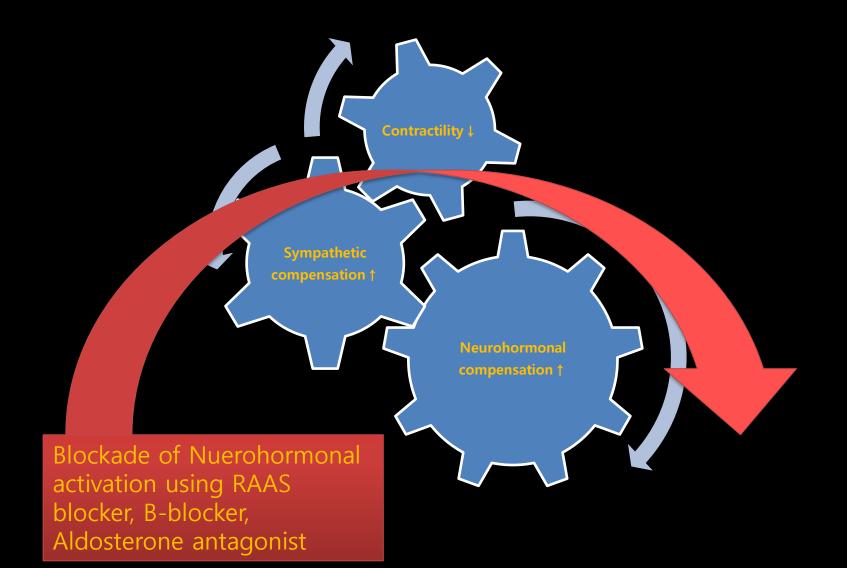
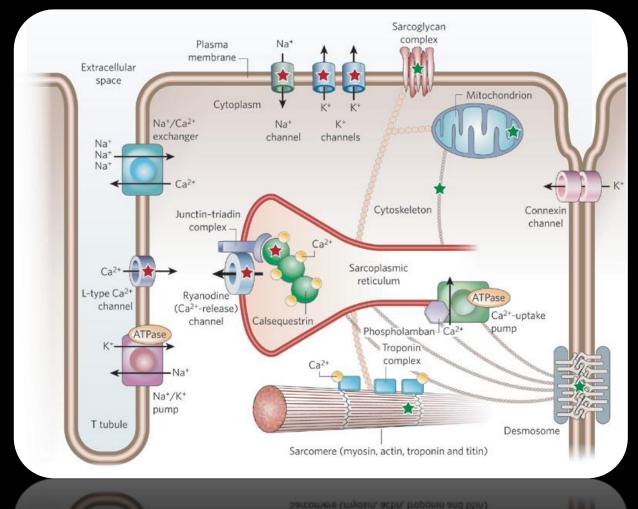

2014년 순환기관련학회 춘계통합학술대회

Cardiac Myosin Activator in Heart Failure



Choi seonghoon Cardiology Hallym University College of Medicine



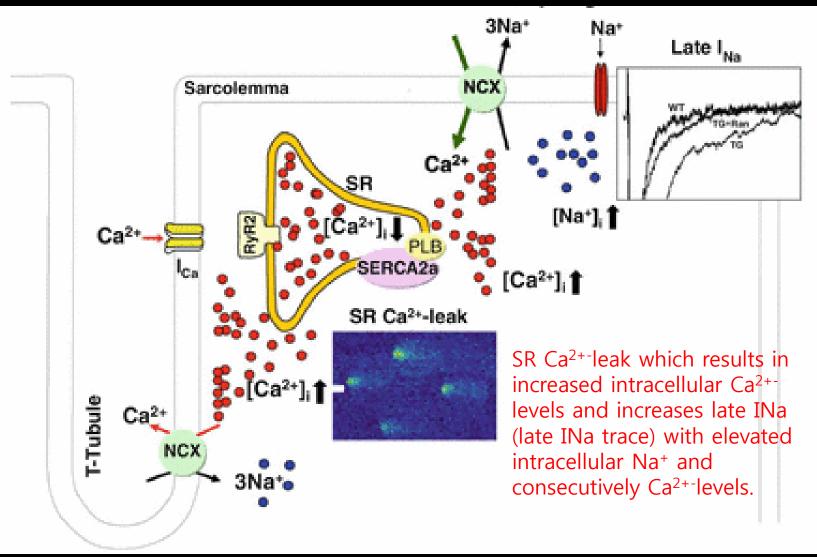
HF treatment

Cardiac Excitation-contraction Coupling

Björn C. Nature 451, 929-936 2008)

Bers DM et al Nature 2002

Contraction L-type Ca²⁺ channel Na⁺/Ca²⁺ exchange


Ryanodine receptor(RYRe) : Ca2+ transient

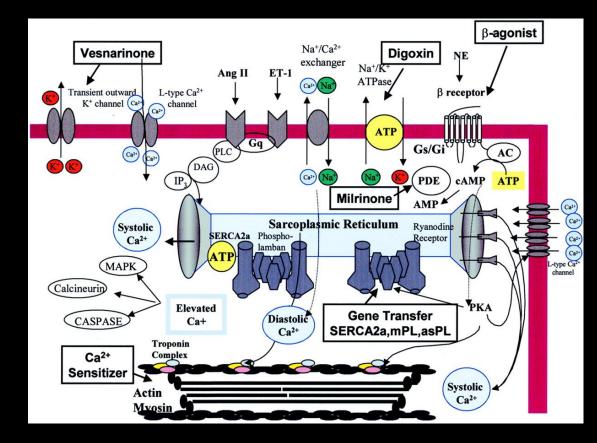
Ca²⁺ -TroponinC

Relaxation

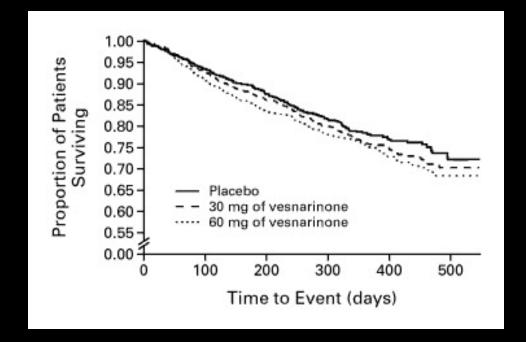
70% Ca²⁺ - SR Ca²⁺ATPase(SERCA2a) \rightarrow SR 28% Na⁺-Ca²⁺ exchanger(NCX) \rightarrow Extraccellular <2% Ca²⁺ ATPase or mitrochondrial ca²⁺ uniport

Cardiac Excitation-contraction Coupling in HF myocardium

Classic Inotropes


On Cardiac contraction/relaxation

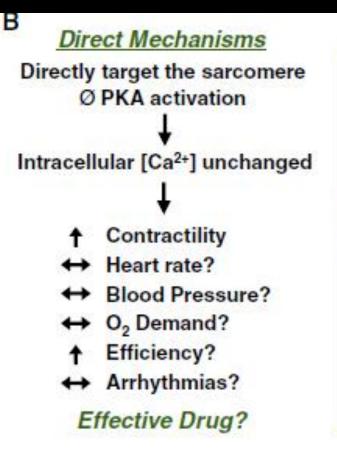
- Hemodynamics, physiologic approach
- Inotrope : improvement & stabilization in hemodynamically unstable cases

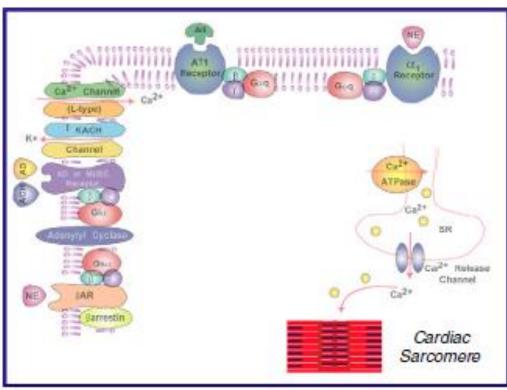

Classical inotropes

- Na⁺/K⁺ ATPase pump inhibitor : digoxin
- β-adrenergic
 receptor agonist :
 β-agonists
- ③ Phosphodiesterase inhibitors : PDEI,

cAMP or intracelluar Ca²⁺ increase

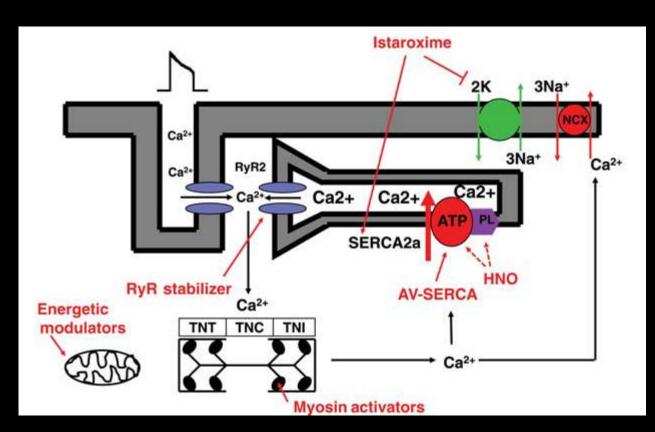
A Dose-Dependent Increase in Mortality with Vesnarinone among Patients with Severe HF




Adverse effect or ↑ mortality

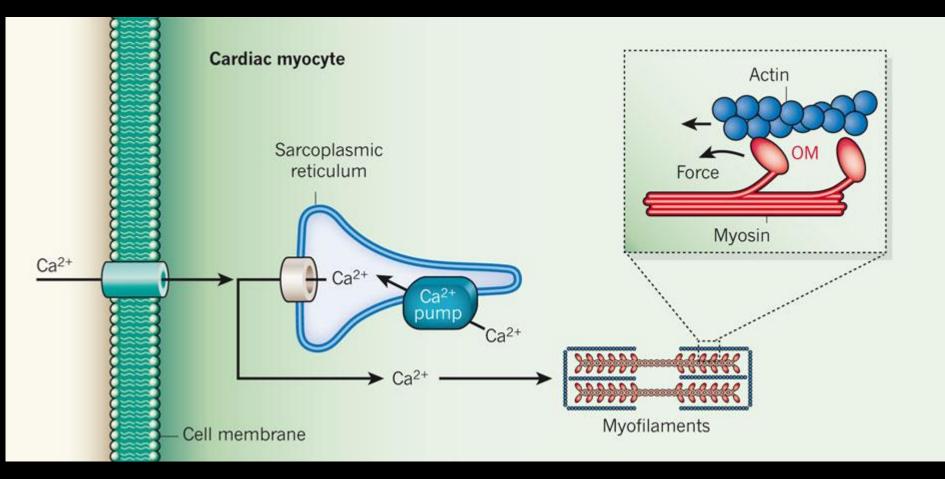
due to arrhythmia, myocardial ischemia, \uparrow cardiac O₂ consumption

N Engl J Med 1998; 339:1810-1816

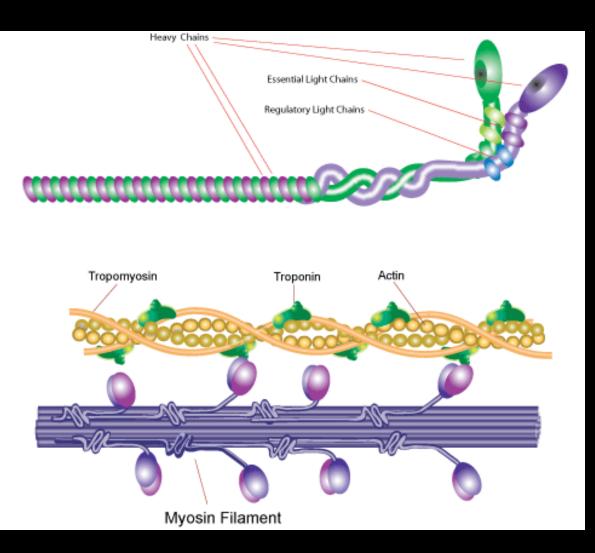

Indirect to Direct

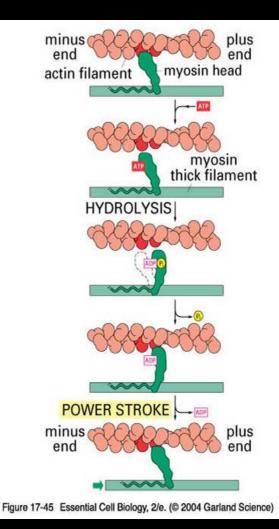
Newly developed inotropes

- Calcium sensitizer ; Levosimendan
- SERCA 2a stimulator (by inhibition of Na⁺/K⁺ ATPase pump; Istaroxime)
- Cardiac myosin activator (omecamtiv mecarbil: CK-1827452)

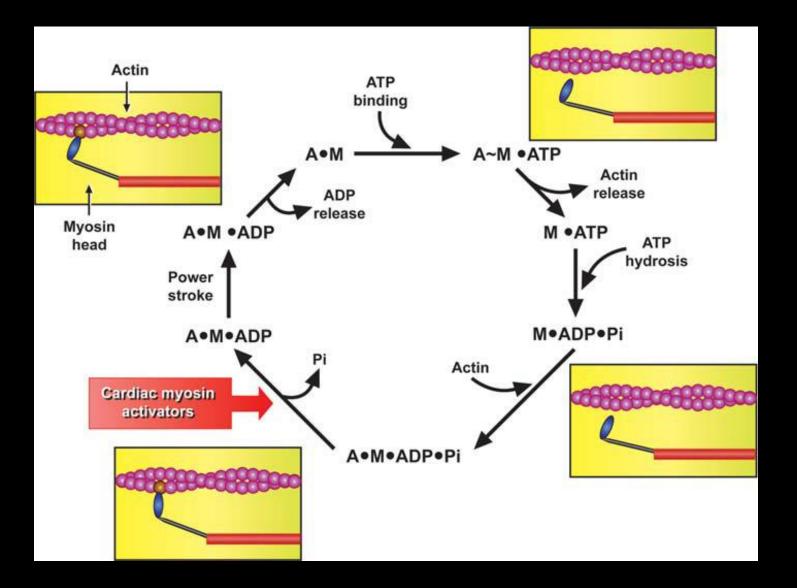


Inotrope - abstract

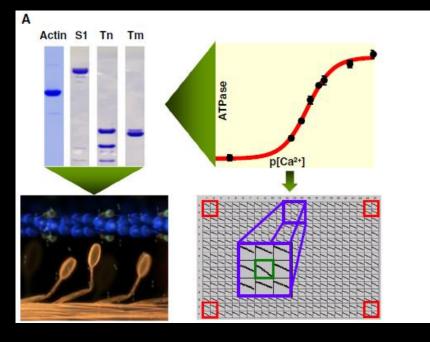

Inotrophic mechanism	Drugs
Na-K-ATPase inhibition	Digoxin
B-adrenergic stimulation	Dobutamine, dopamine
Phosphodiesterase inhibition	Enoximone, Milrinone
Calcium sensitization	Levosimendan
Na-K-ATPase inhibition + SERCA activation	Istaroxime
Acto-myosin cross-bridge activation	Omecamtive mecarbil
SERCA activation	Gene transfer
SERCA activation + vasodilation	Nitroxyl donor;CXL-1020
Ryanodine receptor stabilization	Ryanodine receptor stabilizer:S44121
Energetic modulation	Ectomoxir, pyruvate

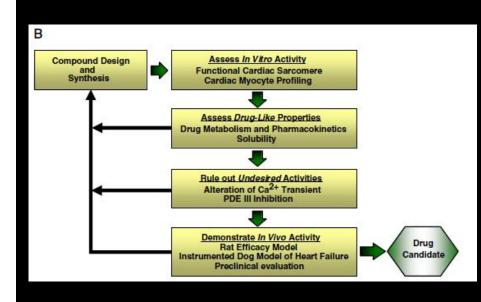

Hasenfus G. et al, Eur Heart J 2011

Cardiac myosin activators



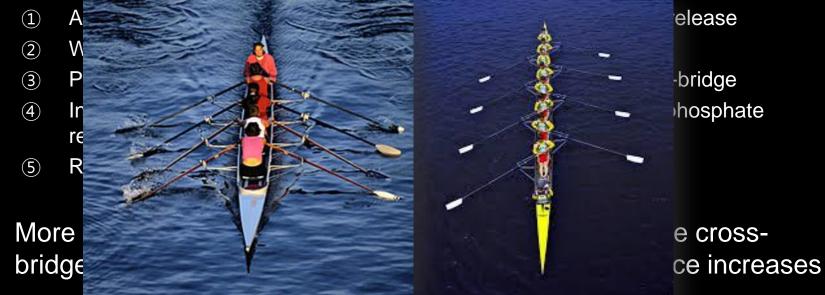
Myosin : ATP hydrolysis



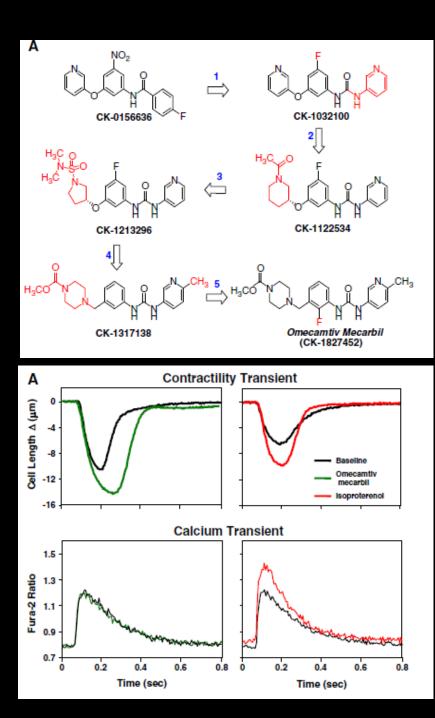

Mode of action of cardiac myosin activators

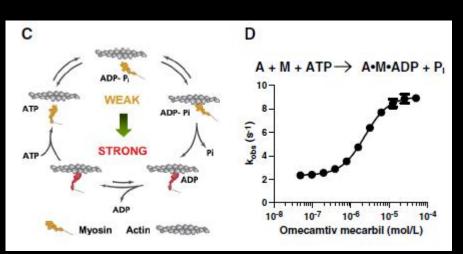
History

- 1998 inhibitors for mitotic kinesin
- Rather activation of biochemical activity of microtubule-based motor protein



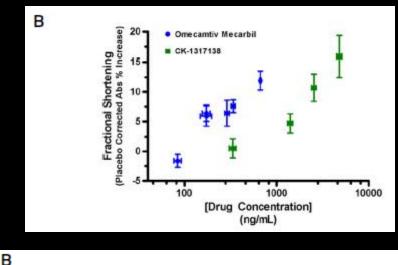
Fady I Malik, Bradley P.Morgan


Cardiac myosin activators


- Cardiac myosin ATPase activity with dose-dependent manner
- Direct influence on cross-bridge cycle

 \bullet

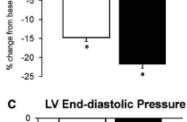
 CK-0689705, CK-1122534, CK-1213296, and CK-1827452(omecamtiv mecarbil)



Omecamtiv mecarbil

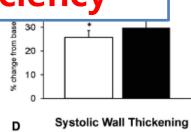
Two Dog model

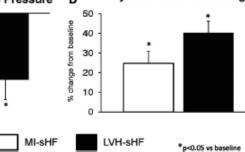
- tachycardia-pacing-induced failure on top of myocardial infarction,
- 2 pressure overload by constriction of the ascending aorta
- \uparrow SV, CO, and \downarrow LV EDP, HR.
- ↑LV systolic ejection time (SET) by 26%.
- Not associated with increased myocardial oxygen consumption.



YT Shen et al. Circ Heart Fail. 2010;3:522-527

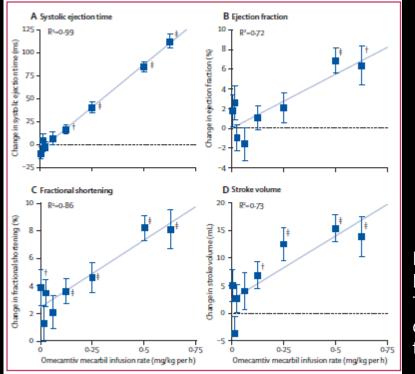
Table 2. Effects of Omecamtiv Mecarbil on LV Function in Conscious Dogs With MI-sHF


			Omi	Omecamtiv Mecarbil Infusion (% Change From Baseline)			
	n	Baseline	15 Minutes	4 Hours	24 Hours	72 Hours (n)‡	
Mean arterial pressure, mm Hg	6	87±5.0	1.4±3.3	-2.5±1.5	-0.6±1.6	-3.6±2.2 (4)	
Heart rate, beats/min	6	143±7.1	-15±3.5*	-12±2.7*	-15±3.0*	-12±3.5 (4)	
Mean left atrial pressure, mm Hg	5	25±0.9	$-25\pm7.0^{*}$	-19±4.7*	-12±1.3	-10.6±5.9 (4)	
LV systolic ejection time, ms	6	156±5.7	23±4.8*	19±1.2*	26±2.9*	32±5.0 (4)	
LV systolic pressure, mm Hg	6	101±5.2	4.9±1.9	-0.2 ± 2.7	1.3±3.9	-2.2±3.5 (4)	
LV end-diastolic pressure, mm Hg	6	28±2.4	-14±4.6*	-17±3.5*	-16±3.5*	-14±4.8 (4)	
LV dP/dt max, mm Hg/s	6	1663±111	4.5±2.5	0.2±3.2	2.4±5.9	6.6±8.4 (4)	
Systolic wall thickening, mm	6	1.5±0.2	18±5.2*†	24±5.8*	25±6.2*	41±9.4 (4)	
Cardiac output, L/min	5	1.5±0.17	8±5.7	16±6.9	22±2.8*	32±8.2 (3)	
Stroke volume, Total peripheral	work	60%	↑ /no	MVo2	increa	±7.8 (3) ±3.6 (3)	
→ 30%	incre	ease c	of card	liac eff	iciency	ſime	
Table 3. Effects or onecannov mecanor			a -> 1		₿ 30*		
Dogs With MI-sHF			eg -10 - eg -15 -		ية ق 20 -		
Ome	ecamtiv Mecarbil Infi	fusion	ā -15 -		8		

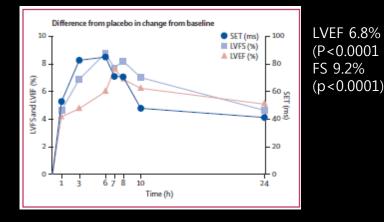

			Omecamtiv Mecarbil Infusion			
	п	Baseline	15 Minutes	4 Hours	24 Hours	
Coronary blood flow, mL/min	6	34±5	36±6	36±6	37±6	
Arterial O ₂ content, mL/dL	5	15±1	16±2	15±1	15±0.7	
Myocardial O ₂ consumption, mL O ₂ /min	5	3±0.3	3±0.4	3±0.4	4±0.3	
Coronary sinus 0 ₂ content, mL/dL	5	4±1	5±1	4±0.8	4±0.4	

٠

-5 -10 -15 -20 -25 -30 -35


YT Shen et al. Circ Heart Fail. 2010;3:522-527

Desirable effect


- Systolic ejection time increase (
 duration of contraction)
- No change of velocity of contraction(dP/dt)
- Clinical merit : Improve cardiac function without compromising myocardial oxygen demand given the absence of changes in cellular calcium homeostasis

Phase I study

 dose-escalating, crossover study, 34 healthy men received a 6-h double-blind intravenous infusion of omecamtiv mecarbil or placebo once a week for 4 weeks.

MTD of 0.5 mg/kg/h

No clinical relevant change in Diastolic function or No significant dose-related adverse effect The dose-limiting toxic effect : myocardial ischemia due to excessive prolongation of systolic ejection time

Teerling JR et al. J Card Fail 2006;12:763.

Phase I study

 Dose of 0.75 and 1.0 mg/kg/h : signs and symptoms of myocardial ischemia most likely due to excessive prolongation of the systolic ejection time, causing decreased diastolic coronary perfusion and decreased diastolic filling.

Phase II study

- multi-center, double-blind, placebo controlled trial sought to assess the effects of CK-452 in patients with stable heart failure.
- LVEF < 40% with ACEI(or ARB) and BB ± diuretics
- 3 infusion with escalating dose 1-week apart

		Placebo Corrected Changes from Baseline				seline		P-Value for Correlation versus [CK-	
[CK-452]	(ng/mL)	1-	>100-	>200-	>300-	>400-	>500-	1827452]	
		100	200	300	400	500	833		Echo PK/PD Relationship: Concentration Response Similar at 1.5 and 24 hr
Observat	ions (n)	69	50	32	19	30	20		Stroke Volume (LVOT SV) vs. [CK-1827452] (na/mL)
	Baseline								Charge free Rander Breit Bill Bill Bill Bill Bill Bill Bill Bi
SET (ms)	318	3±4	24 ± 5‡	54 ± 5‡	65 ± 7‡	72 ± 8‡	98±7‡	p < 0.0001	
SV (mL)	68	1±2	1±2	6±2*	12 ± 3‡	14 ± 3‡	14 ± 3‡	p < 0.0001	
FS (%)	17	1 ± 1	2±1*	3±1†	4 ± 1†	3±1#	4 ± 1‡	p < 0.0001	Tana Fazzi erre 1200 erre 2200 Calves 1,23,4, erre 1500 erre 2100 Calves 1,23,4, erre 1500 erre
EF (%)	32	0±1	0±1	1 ± 1	1 ± 1	1 ± 1	2±1	p < 0.05	

Least Squares Mean ± SEM #p \leq 0.05 * p \leq 0.01 † p ≤0.001 ‡p ≤0.0001 .

• HR : slight decline, no dose-related change in BP

Cleland JGF, et al J Card Fail 2008;14:67

Phase II trial

- double-blind, placebo-controlled, crossover, dose-ranging,
- IV for 2, 24, or 72 h
- Stable systolic HF LVEF <40%, N=45

	Patient n=45
Sex	Male 39(87%) Female 6(13%)
Cause	Ischemic 29(64%) non-ischemic 16(36%)
ACEI or ARB	98%
BB	98%
LVEF	33%

Lancet. 2011 Aug 20;378(9792):676-83.

Phase II trial

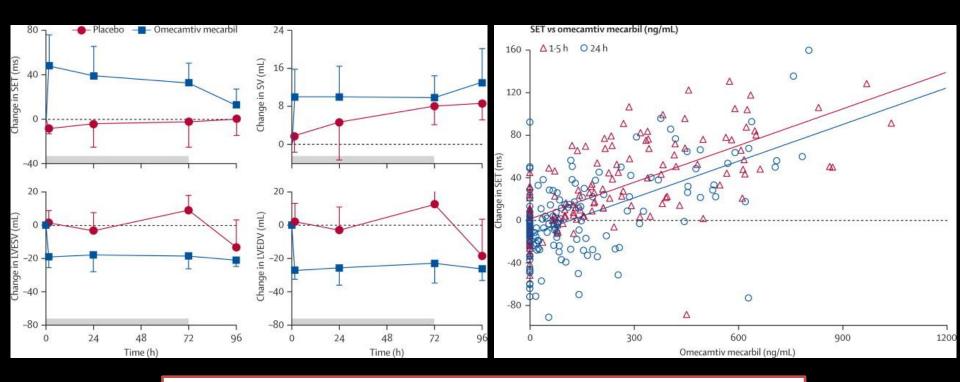


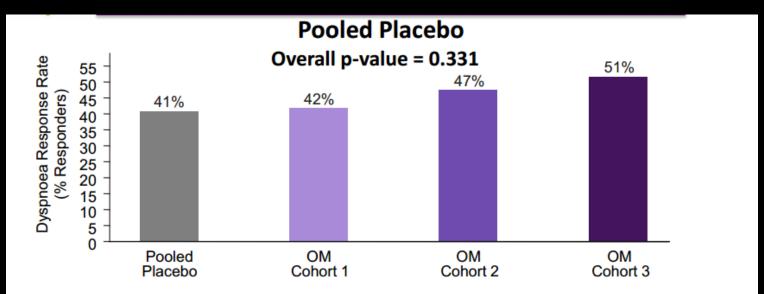
Figure 1 Time gram measure ons of omecan ow SEM. Patie

Increase Stroke volume in patients with systolic HF

/stolic ejection time in from baseline plotted f ast squares linear reg

Lancet. 2011 Aug 20;378(9792):676-83.

Phase IIb trial

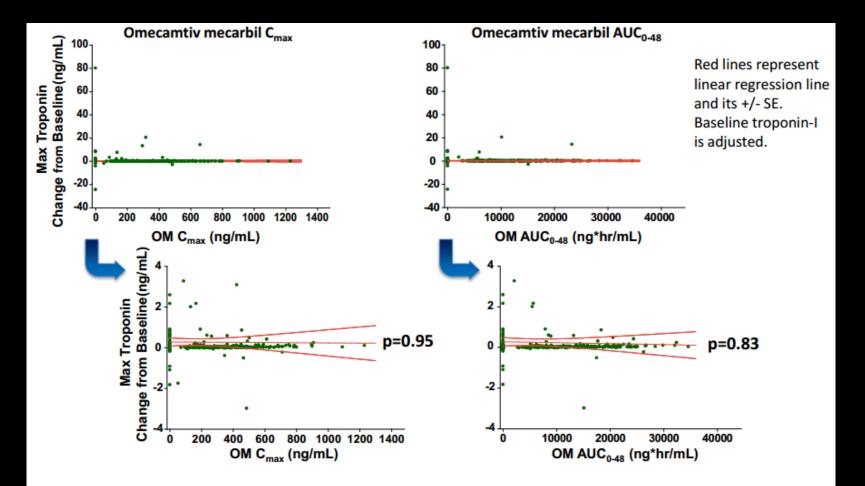

- Acute Treatment with OM to Increase Contractility in Acute Heart Failure (ATOMIC-AHF) study
- Hospitalized HF patients due to acute HF(n=613), systolic dysfunction
- 48 hours IV infusion with three ascending dose cohorts or placebo
- Primary efficacy end point : effect of OM on dyspnea
- Secondary end points : safety, tolerability and effects on additional measures of dyspnea, patients' global assessments, change in NT-proBNP and short-term clinical outcomes

A Phase 2 Study of Intravenous Omecamtiv Mecarbil, A Novel Cardiac Myosin Activator, In Patients With Acute Heart Failure

John R. Teerlink, G. Michael Felker, John J. V. McMurray, Piotr Ponikowski, Marco Metra, Gerasimos S. Filippatos, Kenneth Dickstein, Justin A. Ezekowitz, John G. Cleland, Jae B. Kim, Lei Lei, Beat Knusel, Andrew A. Wolff, Fady I. Malik and Scott M. Wasserman on behalf of the ATOMIC-AHF Investigators and Patients

Primary Efficacy points

Exploratory Analyses: Dose and Concentration Relationship


Dose & Concentration-Response	For Increases of	Response Rate Ratio Increases	95% CI	P-value
Dose*	50 mg total OM administered	5.5%	0.7% - 10.6%	0.025
Plasma concentration*	4000 hr*ng/mL AUC48h	6.4%	1.7% - 11.4%	0.007

Post-random Adjudicated Events

Patient Incidence, n (%)	Pooled Placebo (N = 303)	Pooled OM (N = 303)	Cohort 1 OM (N = 103)	Cohort 2 OM (N = 99)	Cohort 3 OM (N = 101)
Death	10 (3.3)	8 (2.6)	1 (1.0)	4 (4.0)	3 (3.0)
Cardiovascular	10 (3.3)	8 (2.6)	1 (1.0)	4 (4.0)	3 (3.0)
ACS/MI (fatal)	0	1 (0.3)	0	0	1 (1.0)
All Rehospitalisations	37 (12.2)	29 (9.6)	11 (10.7)	11 (11.1)	7 (6.9)
Acute MI	1 (0.3)	1 (0.3)	1 (1.0)	0	0
Unstable angina	0	0	0	0	0
Heart failure	19 (6.3)	22 (7.3)	6 (5.8)	11 (11.1)	5 (5.0)
Other	18 (5.9)	7 (2.3)	4 (3.9)	0	3 (3.0)
All Index hospitalisation MI (non-fatal)	2 (0.7)	5 (1.7)	1 (1.0)	0	4 (4.0)
Investigator reported	0 (0.0)	2 (0.7)	0 (0.0)	0	2 (2.0)
Troponin triggered	2 (0.7)	3 (1.0)	1 (1.0)	0	2 (2.0)
Total MIs (Fatal + Rehosp + Nonfatal Index Hosp)	3 (1.0)	7 (2.3)	2 (1.9)	0	5 (5.0)

ACS/MI = Acute Coronary Syndrome/Myocardial Infarction. 66 patients had 73 positively adjudicated rehospitalisations.

OM Concentration vs. Troponin-I maximal change from baseline

PK/PPD substudy Endopoint: Change in Systolic Ejection Time(SET)

PK Concentration Bin Analysis	Control	OM Concentration Bin 1	OM Concentration Bin 2	OM Concentration Bin 3	
OM concentration range (ng/ml)		≥88-200	>200-300	>300-787	
Change in SET (msec)					
N(n)	45 (88)	10 (18)	15 (23)	12 (19)	
LS mean	-6.7	16.6	26.9	46.4	
Difference from control		23.4	33.6	53.2	
95% CI		(7.4, 39.4)	(19.8, 47.4)	(38.0, 68.3)	
p-value		0.005	<0.0001	<0.0001	
Linear regression slope	p < 0.0001				

Baseline systolic ejection time for all patients was 258 msec. N: number of patients in the bin, n: number of observations in the bin; Control = observations in Placebo + PK below quantification limit; PK bin concentration analysis: repeated measures analysis of covariance; Linear regression slope analysis: repeated measures multiple linear regression.

ATOMIC – AHF Summary

- Efficacy
- ① OM did not meet Primary endpoint of dyspnea itself
- ② Trends toward reduction of worsening HF
- Safety
- ① Overall SAE profile and tolerability similar to placebo
- ② Increase in Troponin; no clear relationship to OM concentration
- ③ No evidence of Pro-arrhythmia
- Pharmacology
- ① PK similar to healthy volunteers and stable HF
- 2 Systolic ejection time significantly increased consistent with MOA
- ③ Small fall in HR & rise in systolic BP at higher dose

On –going trial

- Double blind randomized placebo-controlled dose-finding trial
- COSMIC-HF(Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure)
- To select an oral modified release (MR) formulation and dose of OM for chronic twice daily (BID) dosing in subjects with HF and left ventricular systolic dysfunction (LVSD)
- To characterize its pharmacokinetics (PK) after 12 weeks of treatment

In Summary

- Classical Inotropes has limited effect on HF
- New agent targeting Systolic dysfunction without cAMP or Ca2+ is on developing state
- Omecamtive mercarbil is unique new drug for enhancing actinmyosin contraction with ATPase activity and effective contraction
- Animal & Phase I-II study showed enhanced SV, SET without increasing adverse effects (except higher dose).
- But phase IIb Study on Acute decompensated HF patients did not show improving Primary outcome(dyspnea).
- Another study for chronic stable HF is need & on-going(COSMIC-HF)

Thank you for your attention !!