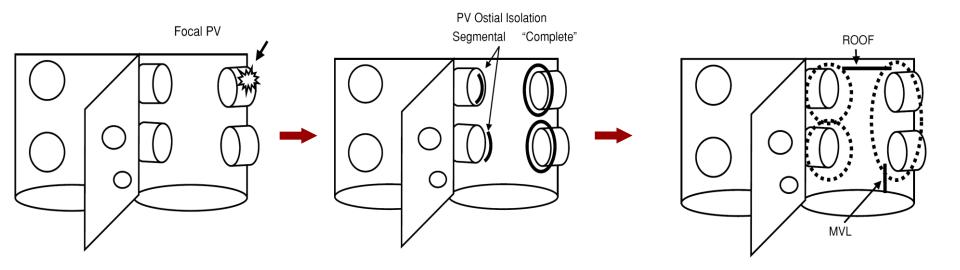
2017 춘계심혈관 통합학술대회 AF Summit: Atrial Fibrillation Apr.21(Fri) 14:40-16:10 Rm.300B 15:00-15:10

Outcomes of AF Ablation

Gi-Byoung Nam MD Asan Medical Center, UUCM

2017 Annual Spring Scientific Conference of the KSC in conjunction with KHRS, KSIC, KSE, and KSoLA

The Korean Society of Cardiology COI Disclosure


Name of First Author: Gi-Byoung Nam MD

The authors have no financial conflicts of interest to disclose concerning the presentation

2017 Annual Spring Scientific Conference of the KSC in conjunction with KHRS, KSIC, KSE, and KSoLA

Evolution of Ablation Strategy

Substrate Ablation (example targets)

Atrial Fibrillation Ablation: Reaching the Mainstream JOHN D. FISHER, *PACE 2006; 29:523–537*

Comparative Effectiveness of Wide Antral Versus Ostial Pulmonary Vein Isolation

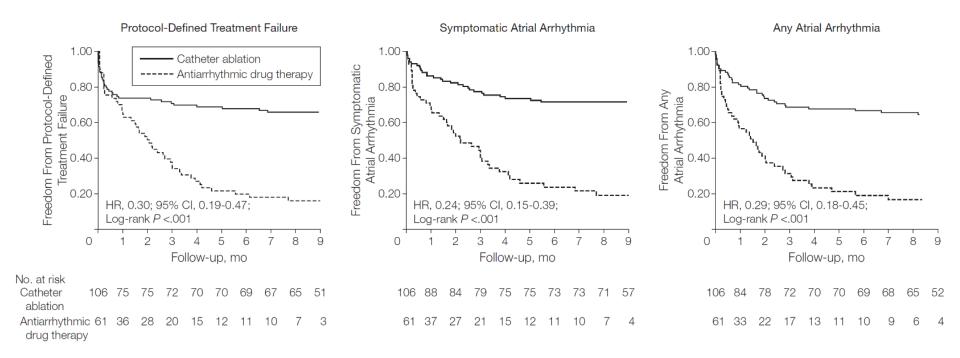
	wide antra	I PVI	ostial I	PVI		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I	M-H, Fixe	d, 95% CI	
Arentz T	18	55	28	55	12.2%	0.47 [0.22, 1.02]				
Fiala M	5	56	6	54	3.6%	0.78 [0.22, 2.74]			5)	
Hwang HJ	12	45	18	36	9.5%	0.36 [0.14, 0.92]				
Li-Wei Lo	3	27	4	46	1.7%	1.31 [0.27, 6.36]				
Liu X	9	55	12	55	6.5%	0.70 [0.27, 1.83]				
Mansour M	10	40	16	40	7.8%	0.50 [0.19, 1.30]			-3	
Nilsson B	20	46	38	54	12.9%	0.32 [0.14, 0.74]				
Oral H	4	40	13	40	7.6%	0.23 [0.07, 0.79]				
Sawhney	5	33	5	33	2.8%	1.00 [0.26, 3.84]				
Tan HB	7	45	12	40	7.0%	0.43 [0.15, 1.23]			-	
Yamada	11	51	22	50	11.3%	0.35 [0.15, 0.84]				
Yamane T*	6	79	11	44	8.5%	0.25 [0.08, 0.72]	2,	-		
Yamane T**	8	38	14	26	8.5%	0.23 [0.08, 0.68]	-			
Total (95% CI)		610		573	100.0%	0.42 [0.32, 0.56]		•		
Total events	118		199							
Heterogeneity: Chi ² = 9	9.54, df = 12	(P = 0.6)	66); I ² = 0 ⁶	%					10	400
Test for overall effect:						E.	0.01 0		10 Favora (con	100
	1		88900 # 10			Fé	avors [exper	inental	Favors [con	luoij

Benefits and risks of additional ablation of CFE in pAF

	PVI+C	FAE	PVI ald	one		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
1.1.1 PAF								
Oral 2004	6	30	10	30	5.2%	0.60 [0.25, 1.44]	2004	
Verma 2007-A	8	60	9	60	5.1%	0.89 [0.37, 2.15]	2007	
Deisenhofer 2009	12	50	12	48	7.7%	0.96 [0.48, 1.92]	2009	
Di Biase 2009	8	34	9	35	5.7%	0.92 [0.40, 2.09]	2009	
Verma 2010-A	7	22	12	21	7.3%	0.56 [0.27, 1.14]	2010	
Chen 2011	18	58	8	35	7.3%	1.36 [0.66, 2.79]	2011	
Gi-Byoung Nam2012	6	35	13	35	5.5%	0.46 [0.20, 1.08]	2012	
Subtotal (95% CI)		289		264	43.8%	0.79 [0.59, 1.06]		•
Total events	65		73					
Heterogeneity: Tau ² = 0	0.00; Chi ²	= 5.52,	df = 6 (P	= 0.48)	; l² = 0%			
Test for overall effect: Z	= 1.55 (P	= 0.12)					

Is there still a role for additional linear ablation in patients with pAF? An Updated Meta-analysis of RCTs

* sinus rhythm maintenance

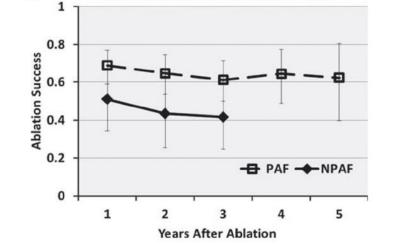

	PVI+linear al	lation	PV	Ľ.		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Arbelo 2014	35	59	34	61	7.0%	1.06 [0.78, 1.45]	
Fassini 2005	48	63	39	63	10.0%	1.23 [0.97, 1.56]	
Gaita 2008	48	84	19	41	5.1%	1.23 [0.85, 1.80]	
Hocini 2005	39	45	31	45	10.5%	1.26 [1.00, 1.58]	
Kim 2013	108	153	81	102	16.4%	0.89 [0.77, 1.02]	
Kim 2014	42	50	44	50	15.1%	0.95 [0.81, 1.12]	
Mun 2012	83	104	46	52	16.8%	0.90 [0.79, 1.04]	
Sawhney 2010	17	33	19	33	4.0%	0.89 [0.58, 1.39]	
Sheikh 2006	45	50	41	50	15.0%	1.10 [0.94, 1.29]	
Total (95% CI)		641		497	100.0%	1.03 [0.93, 1.13]	+
Total events	465		354				
Heterogeneity: Tau ² =	= 0.01; Chi ² $= 1$	5.22, df	= 8 (P =	0.06);	$l^2 = 47\%$	-	
Test for overall effect			10101428				0.5 0.7 1 1.5 2 PVI+linear ablation PVI

* risks for complications

	PVI+linear ab	lation	PV	Ľ –		Risk Ratio			Risk	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-H, Rando	om, 95% Cl	
Sheikh 2006	0	50	3	50	6.4%	0.14 [0.01, 2.70]	2006		•		
Mun 2012	3	104	3	52	22.7%	0.50 [0.10, 2.39]	2012				
Kim 2013	4	153	4	102	29.9%	0.67 [0.17, 2.61]	2013				
Arbelo 2014	4	59	5	61	34.8%	0.83 [0.23, 2.93]	2014				
Kim 2014	0	50	2	50	6.1%	0.20 [0.01, 4.06]	2014				
Total (95% CI)		416		315	100.0%	0.57 [0.27, 1.19]			-		
Total events	11		17						- 1925		
Heterogeneity: Tau ² =	$= 0.00; Chi^2 = 1$.78, df =	= 4 (P = 0)).78); l ²	= 0%			0.005	01	10	200
Test for overall effect	Z = 1.50 (P = 0)	0.13)							0.1 1 [experimental]	Favours [control]	200

International Journal of Cardiology 209 (2016) 266-274

Comparison with AAD



Among patients with paroxysmal AF who had not responded to at least 1 antiarrhythmic drug, the use of catheter ablation compared with ADT resulted in a longer time to treatment failure during the 9-month follow-up period.

Long-term Outcomes of Catheter Ablation of AF : A Systematic Review and Meta-analysis

В

Late ablation success by AF type

Years After Ablation	1	2	3	4	5
Single (number of studies)	17	17	17	10	6
Multiple (number of studies)	9	9	9	9	4

Years After Ablation	1	2	3	4	5
PAF (number of studies)	10	10	10	5	3
NPAF (number of studies)	6	6	6	2	1

J Am Heart Assoc. 2013;2:e004549

Procedure Success: meta analysis

	pAF	NPAF
12 month single procedure	66.6% (95% CI: 58.2%-74.2%)	51.9% (95% CI: 33.8%- 69.5%)
Late outcome	54.1%	41.8%
single procedure	(95% CI:44.463.4%)	(95% CI: 25.2-60.5%)
Late	79.0%	77.8%
multiple procedure	(95% CI: 67.6%-87.1%)	(95% CI: 68.7-84.9%)

(1) a single ablation procedure may be sufficient to achieve freedom from atrial arrhythmia in 50% of patients, (2) multiple procedures will be required to achieve control of AF in many patients, but 80% of patients will achieve long-term freedom from atrial arrhythmia; and (3) Although there is an incidence of late recurrence in initially successfully ablated patients, there is relative stability of arrhythmia-free survival at late-term follow-up of 5 years.

J Am Heart Assoc. 2013;2:e004549

Discerning the Incidence of Sx and Asx Episodes of AF Before and After Catheter Ablation (DISCERN AF)

Before and after ablation, a greater proportion of AF/AFL/AT duration was asymptomatic. In total, <u>69.0% of all episodes</u>, or 56.0% of the total AF/AFL/AT duration, were considered asymptomatic.

Atrial arrhythmia burden decreased by 86%, from 2.0 to 0.3 hrs/pt/day.

Episodes of AF became shorter from a median of <u>22 to 6 minutes</u>, less irregular, and more likely to be asymptomatic (from 52% before to 79% after ablation; P=.002).

The success rate of AF ablation: 58% by Sx, <u>46</u>% w ILR at 18 months. (Six patients (12%) exclusively ASx recurrences) **Catheter Ablation Versus AAD Therapy for AF (CABANA) Trial** catheter ablation vs. current pharmacologic therapy (either rate control or rhythm control drugs)

primary endpoint - total mortality secondary endpoint - composite endpoint of total mortality, disabling stroke, serious bleeding and cardiac arrest. Additional secondary endpoints will include AF recurrence and quality of life and cost effectiveness.

The EAST (Early treatment of AF for Stroke prevention Trial) recent onset AF at risk for stroke (CHA₂DS₂VASc score \geq 2) guideline-mandated usual care (anticoagulation, therapy of underlying heart disease, and rate control) or to usual care plus early rhythm control therapy (antiarrhythmic drugs, catheter ablation)

primary outcome of cardiovascular death, stroke, worsening of heart failure, and myocardial infarction.

secondary outcomes include cognitive function and quality of life.

Durable PVI

Simple PVI

Adenosine

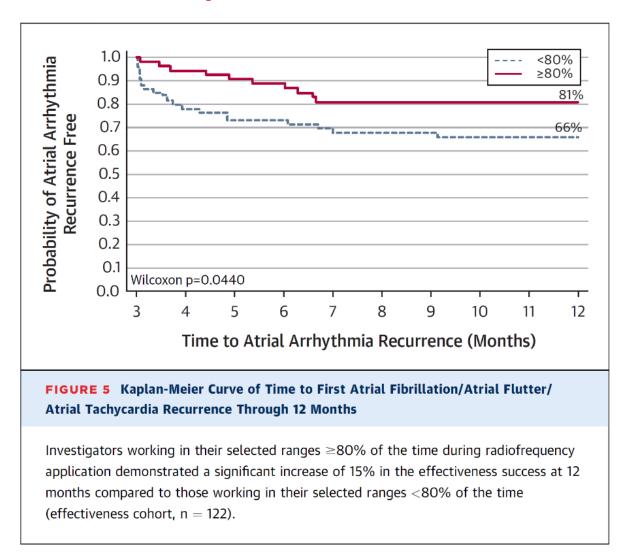
Pacing

Contact force

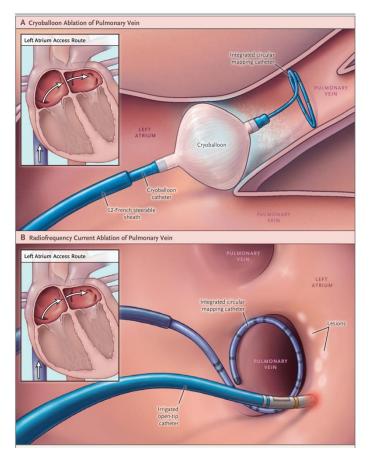
Cryo-balloon Laser-balloon Hot-balloon

PVAC-gold

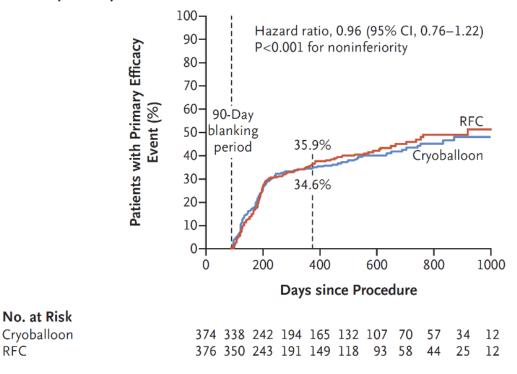
Adenosine-guided PV isolation for the Tx of pAF : ADVICE trial


Adenosine unmasked dormant PV conduction in 284/534 pts (53%).

Additional adenosine-guided ablation - an absolute risk reduction of $27 \cdot 1\%$ and a hazard ratio of $0 \cdot 44$ (95% CI $0 \cdot 31 - 0 \cdot 64$; p<0.0001).

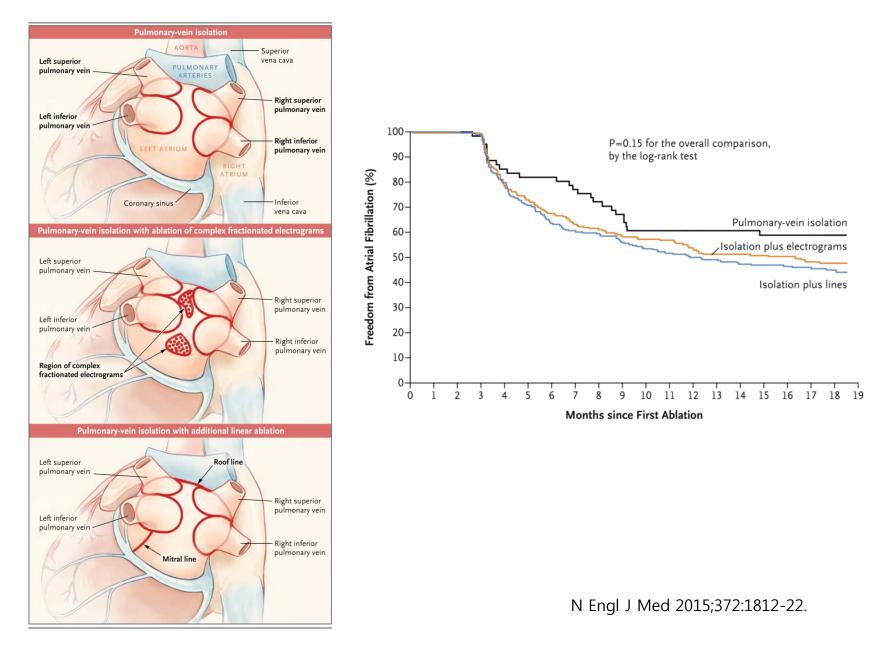

Occurrences of serious adverse events were similar in each group.

Conclusion: Adenosine testing to identify and target dormant PV conduction during catheter ablation of AF is a safe and highly effective strategy to improve arrhythmia-free survival in patients with pAF. This approach should be considered for incorporation into routine clinical practice.


pAF Catheter Ablation with a CF Sensing Catheter Results of the Prospective, Multicenter SMART-AF Trial

Cryoballoon or RF Ablation for Paroxysmal AF

A Primary Efficacy End Point



Cryoballoon ablation was noninferior to RF ablation with respect to efficacy for the Tx of patients with pAF, and there was no significant difference between the 2 methods with regard to overall safety.

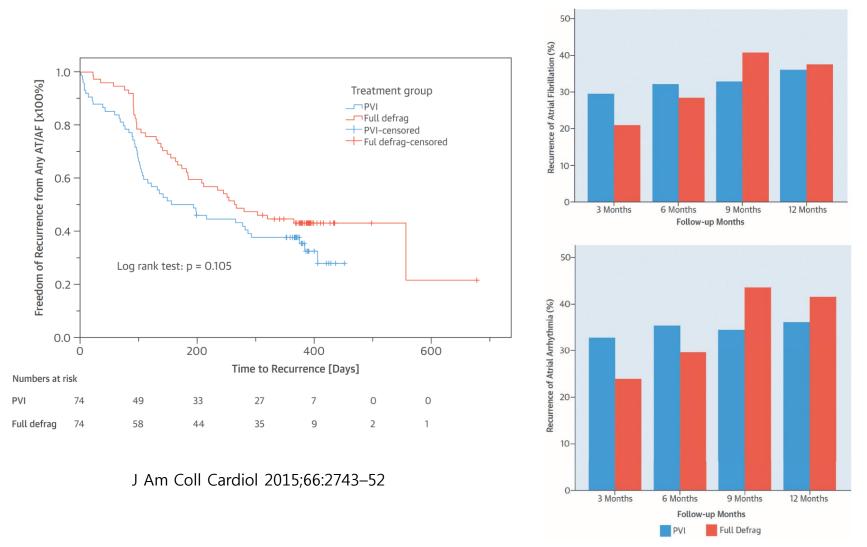
RFC

Persistent AF

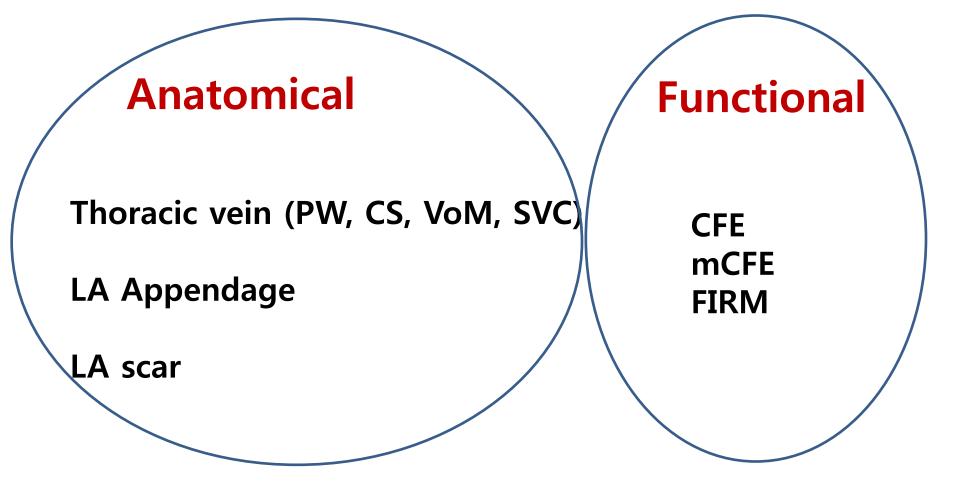
Approaches to Catheter Ablation for Persistent AF

The impact of adjunctive CFE ablation and linear lesions on outcomes in persistent AF: a meta-analysis

0	14/ 11/	Risk ratio	N/	Risk ratio
Study or subgroup	Weight	M-H, random, 95% Cl	Year	M-H, random, 95% Cl
Verma 2007	8.3%	0.64 [0.27, 1.47]	2007	
Elayi	16.3%	0.64 [0.42, 0.98]	2008	
Lin	11.8%	0.50 [0.27, 0.93]	2009	
Oral	19.4%	1.03 [0.76, 1.39]	2009	-+-
Verma 2010	4.1%	0.26 [0.07, 1.00]	2010	< • • • • • • • • • • • • • • • • • • •
Dixit	19.0%	1.39 [1.01, 1.90]	2012	
Verma 2015	21.1%	1.13 [0.90, 1.42]	2015	
Total (95% Cl)	100.0%	0.86 [0.64, 1.16]		•
Total events				
Heterogeneity: $\tau^2 = 0$.	10; $\chi^2 = 20.1$	70%		
Test for overall effect				0.2 0.5 1 2 5
	X	eessensensee		CFAE + PVI PVI

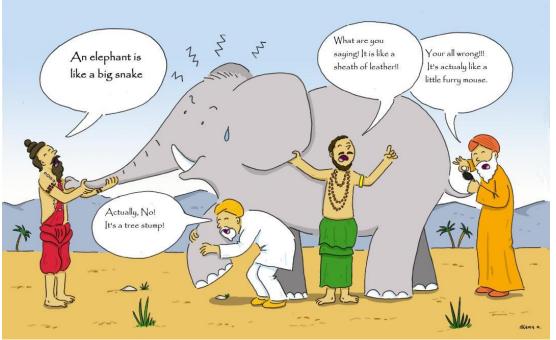

Figure 2 Summary of the RR of recurrent AF/AT after a single procedure with adjunctive CFAE ablation compared with PVI alone.

Study or subgroup	Weight	Risk ratio M-H, random, 95% Cl	Year	Risk ratio M-H, random, 95% Cl
Study or subgroup	weight	M-H, Tanuoni, 95% Ci	Teal	M-H, Tahuuth, 95% Ci
Fassini	20.7%	0.38 [0.20, 0.74]	2005	_
Willems	23.0%	0.39 [0.23, 0.67]	2006	_
Gaita	27.6%	0.72 [0.54, 0.97]	2008	
Verma 2015	28.6%	1.20 [0.96, 1.50]	2015	
Total (95% Cl)	100.0%	0.64 [0.37, 1.09]		
Total events				
Heterogeneity: $\tau^2 = 0$.25; $\chi^2 = 24$.	23, df = 3 (P<0.0001); I ²	=88%	-++++
Test for overall effect	: Z=1.66 (F	P=0.10)		0.2 0.5 1 2 5
	,	,		LALA + PVI PVI


Figure 4 Summary of the RR of recurrent AF/AT after a single procedure with adjunctive LALA compared with PVI alone.

Europace (2016) 18, 359–367

PVI vs stepwise approach: CHASE AF trial


A stepwise approach aimed at AF termination does not seem to provide additional benefit over PVI alone in patients with peAF, but it is associated with significantly longer procedural and fluoroscopic duration as well as RF application time.

Common target?

Individualized?

pAFPeAFLS PeAFTrigger(PV)Substrate

https://www.google.co.kr/search?q=elephant+blind+man+story&tbm=isch &imgil=ozQEG2iwX6qRNM%253A%253BMKURXxelorKV7M%253Bhttp%252 53A%25252F%25252Fwww.philipchircop.com%25252Fpost%25252F2578327 5888%25252Fseeing-the-full-elephant-its-a-tree-itsa&source=iu&pf=m&fir=ozQEG2iwX6qRNM%253A%252CMKURXxelorKV7 M%252C_&usg=__W1DIInuZ2COOunIDhNXW1IRxXO0%3D&biw=1423&bih =696&ved=0ahUKEwi8ruWXo6vTAhUBN5QKHdaYCbkQyjcIPQ&ei=6Zf0WPy VCYHu0ATWsabICw#imgrc=V9yW51ShYcj1UM:&spf=25

Conclusions

- 1. 심방세동의 도자절제술은 동율동 조절에 있어 약물치료보다 우월한 효과.
- 2. 3년 이상의 장기 효과는 단일 시술 시 50%, 반복 시술 시 약 80% 효과.
- 발작성 심방세동은 폐정맥 주위 심근 고립술로 (완벽하지는 않으나) 어느 정도 만족스러운 결과.
- 재발의 주요 원인이 불완전한 폐정맥 고립술에 기인한다는 점에서 좀더 <u>완벽한</u> 폐정맥 고립술을 이루기 위한 방법으로 연구가 진행되고 있으며, 동시에 폐정맥 고립술을 더욱 <u>간편하게</u> 수행하기 위한 연구도 진행 중.
- 지속성 심방세동에서는 폐정맥 고립술 만으로는 부족하나, <u>추가 시술의</u>
 <u>효과</u>가 정립되지 않음.