Characteristics of NOAC **Wonkwang University Hospital** Kim, Nam-Ho ### **Difference** ### NOAC - Target specificity - Absorption and metabolism - Race difference ## **Oral Anticoagulants** #### 1. Target Specificity #### 2. Uptake, Metabolism, and Elimination #### 2.1.1. GI Bleeding #### **Dabigatran** 1. non-absorbed, a promotes GI ble angiectasia) 2. The drugs direct I tract lumen rosions or I. Gastroint Endoscopy 2013;78:227-239 #### 2.1.2. Effect of Food on Rivaroxavan High bioavailability (≥ 80%) of 15 mg and 20 mg rivaroxaban was achieved when taken with food; therefore, these doses need to be taken with food. 49-561. ### 2.2. Metabolism - Drug Interaction P-glycoprotein inhibitors (verapamil, dronedarone, amiodarone, quinidine) Heidbuchel H, et al. Eurpace 2015 EHRA Practical Guide ### 2.2.1. Drug-Drug Interaction | | | | via | Dabigatran | Apixaban | Edoxaban | Rivaroxaban | |--------------------|--|--|--|--|------------------------------|--|--| | Antiarrhythmic dru | Other cardiovascular | Fungostatics | | | | | | | Amiodarone | drugs Atorvastatin | Fluconazole | Moderate
CYP3A4
inhibition | No data yet | No data yet | No data yet | +42% (if
systemically
administered) ²⁴⁷ | | Digoxin | | Itraconazole;
Ketoconazole;
Posaconazole; | potent P-gp and
BCRP
competition; | +140-150%
(US: 2 x 75
mg if CrCl | +100% ⁶⁰ | +87-95% ⁶⁴
(reduce NOAC
dose by 50%) | Up to +160% ²⁴⁷ | | Diltiazem | Antibiotics | Voriconazole; | CYP3A4
inhibition | 30-50 ml/min) | | | | | | Clarithromycin; | Immunosuppressive | | | | | | | | Erythromycin | Cyclosporin;
Tacrolimus | P-gp
competition | Not
recommended | No data yet | +73% | Extent of increase unknown | | Dronedarone | Rifampicin*** | Antiphlogistics | | | | | | | Quinidine | raini peni | Naproxen | P-gp
competition | No data yet | +55% ²⁵⁴ | No effect (but
pharmacodynamically
increased
bleeding time) | No data yet | | | | Antacids | | | | | | | Verapamil | Antiviral drugs | H2B; PPI; Al-Mg-hydroxide | GI absorption | Minus 12-
30% ^{45, 53, 58} | No effect ⁵⁵ | No effect | No effect ^{241, 242} | | , or aparim | HIV protease inhibitor
(e.g. ritonavir) | Others | | | | | | | | | Carbamazepine***; Phenobarbital***; Phenytoin***; St John's wort** | P-gp/ BCRP and
CYP3A4/CYP2J
2 inducers | minus
66% ²⁵³ | minus
54% ^{SmPC} | minus 35% | Up to minus
50% | #### 2.3. Elimination - CKD #### 2.3.1 Estimated Drug Half-lives & Plasma **Concentration in Different Stages of CKD** | | | Dabigatran | A pixaban | Edoxaban | Rivaroxaban | |---|---------------------------|----------------------------|------------------------|-----------------------------|------------------------------------| | | CrCl >80 mL/min | 12–17 h ⁶¹ | 12 h | 10-14 h ^{51,65} | 5–9 h (young)
11–13 h (elderly) | | | CrCl 50-80 mL/min | ~17 h ¹²² | ~14.6 h ¹²³ | ∼8.6 h ¹²⁴ | ∼8.7 h ¹²⁵ | | | CKD Stages I and II | (+50%) | (+16%) | (+32%) ^{SmPC} | $(+44\%)^{126}$ | | | CrCl 30-50 mL/min | \sim 19 h ¹²² | ~17.6 h | \sim 9.4 h ¹²⁴ | ∼9.0 h | | Ĺ | CKD Stage III | (+320%) | (+29%) | (+74%) ^{SmPC} | (+52%) ¹²⁶ | | | CrCl 15-30 mL/min | ~28 h ¹²² | ∼17.3 h | ~16.9 h ¹²⁴ | ∼9.5 h | | | CKD Stage IV | (+530%) | (+44%) | (72%) ^{SmPC} | $(+64\%)^{126}$ | | | CrCl ≤ 15 mL/min | No data | - | - | - | | | CKD Stage V; off-dialysis | | (+36%) | (+93%) ^{SmPC} | $(+70\%)^{127}$ | Heidbuchel H, et al. Eurpace 2015 EHRA Practical Guide # 2.3.2. Approved European Labels for NOACs and Their Dosing in CKD | | Dabigatran | Apixaban | Edoxaban | Rivaroxaban | |--|--|---|--|---| | Fraction renally excreted of absorbed dose | 80% | 27% ^{52–55} | 50% ³⁶ | 35% | | Bioavailability | 3–7% | 50% | 62% ⁵¹ | 66% without food
Almost 100% with
food | | Fraction renally excreted of administered dose | 4% | 12-29% ⁵²⁻⁵⁵ | 37% ³⁶ | 33% | | Approved for CrCl ≥ | ≥30 mL/min | ≥15 mL/min | ≥15 mL/min | ≥15 mL/min | | Dosing recommendation | $CrCl \ge 50$ mL/min: no adjustment (i.e. 150 mg BID) | Serum creatinine ≥1.5 mg/dL: no adjustment (i.e. 5 mg BID) ^a | CrCl ≥ 50 mL/min:
no adjustment
(i.e. 60 mg OD) ^b | CrCl ≥ 50 mL/min:
no adjustment
(i.e. 20 mg OD) | | Dosing if CKD | When CrCl 30–49 mL/min, 150 mg BID is possible (SmPC) but 110 mg BID should be considered (as per ESC guidelines) ⁵ Note: 75 mg BID approved in US only ^c : if CrCl 15–30 mL/min if CrCl 30–49 mL/min and other orange factor Table 6 (e.g. verapamil) | CrCl 15–29 mL/min: 2.5 mg BID If two-out-of-three: serum creatinine ≥ 1.5 mg/dL, age ≥80 years, weight ≤60 kg: 2.5 mg BID | 30 mg OD
when CrCl
15–49 mL/min | 15 mg OD
when CrCl
15–49 mL/min | | Not recommended if | CrCl < 30 mL/min | CrCl < 15 mL/min | CrCl < 15 mL/min | CrCl < 15 mL/mir | Red: contra-indicated/not recommended. Orange: reduce dose as per label. Yellow: consider dose reduction if two or more 'yellow' factors are present (see also Table 6). CKD, chronic kidney disease; CrCl, creatinine clearance; BID, twice a day; OD, once daily; SmPC, summary of product characteristics. Heidbuchel H, et al. Eurpace 2015 EHRA Practical Guide $^{^{}a}$ The SmPC specifies dose reduction from 5 to 2.5 mg BID if two of three criteria are fulfilled: age \geq 80 years, weight \leq 60 kg, serum creatinine >1.5 mg/dL. ^bFDA provided a boxed warning that 'edoxaban should not be used in patients with CrCL > 95 mL/min'. EMA advised that 'edoxaban should only be used in patients with high CrCl after a careful evaluation of the individual thrombo-embolic and bleeding risk' because of a trend towards reduced benefit compared to VKA. ^cNo EMA indication. FDA recommendation based on PKs. Carefully weigh risks and benefits of this approach. Note that 75 mg capsules are not available on the European market for AF indication. #### 3. Race Difference | | Dabigatran | Apixaban | Edoxaban | Rivaroxaban | |--|---|--|--|--| | Bioavailability | 3 to 7% | 50% | 62% ⁵¹ | 66% without food.
Almost 100% with food | | Prodrug | Yes | No | No | No | | Clearance non-renal/renal of
absorbed dose | 20%/80% | 73%/27% ^{52–55} | 50%/50% ^{36,51,56} | 65%/35% | | (if normal renal function; see
also 'Patients with chronic
kidney disease' section) ^a | | | | | | Liver metabolism: CYP3A4 involved | No | Yes (elimination, moderate contribution) ⁵⁷ | Minimal (<4% of elimination) | Yes (elimination, moderate contribution) | | Absorption with food | No effect | No effect | 6–22% more; minimal effect on exposure ⁵⁸ | +39% more ⁵⁹ | | Intake with food recommended? | No | No | No | Mandatory | | Absorption with H2B/PPI | -12 to 30% (not clinically relevant) ⁶⁰⁻⁶² | No effect ⁶³ | No effect | No effect ^{59,64} | | Asian ethnicity | +25% ⁶² | No effect | No effect ⁵⁸ | No effect | | GI tolerability | Dyspepsia
5 to 10% | No problem | No problem | No problem | | Elimination half-life | 12 to 17 h ⁶¹ | 12 h | 10-14 h ^{51,65} | 5–9 h (young)
11–13 h (elderly) | H2B, H2-blocker; PPI, proton pump inhibitor; GI, Gastrointestinal. ^aFor clarity, data are presented as single values, which are the mid-point of ranges as determined in different studies. # 3.1. Effect of Race on Dabigatran - RE-LY trial - | Covariate | Effect on model parameters | Effect on AUC _{ss} | |-------------|--|---| | CRCL | Increase in CL/F according to an E_{max} function with $E_{\text{max}} = 124 \text{ L h}^{-1}$, $EC_{50} = 56.7 \text{ mL min}^{-1}$ and power = 1.29. CL/F increases with increasing CRCL | Patients with CRCL of 30 and 50 mL min ⁻¹ have a 1.8-fold and 1.2-fold increased AUC _{ss} , respectively, as compared with the median CRCL of 69 mL min ⁻¹ | | Age | Decrease of 0.41% in CL/F per year older than the median of 72 years (and vice versa) | A 97-year-old patient has an approximately 11.5% increased AUC _{ss} as compared with a 72-year-old patient | | Sex | Decrease of 8.3% in CL/F in female patients | Females have a 9.1% increased AUC _{ss} as compared with male patients | | South Asian | Decrease of 20.3% in CL/F in the ethnic group of South Asian partients | AUC _{ss} is increased by 25.5% in South Asians as compared with other ethnicities | | HF | Decrease of 6.7% in CL/F in patients with HF of class II, III, or IV | AUC _{ss} is increased by 7.2% in patients with HF of class II–IV as compared with patients without HF or with class I HF | | Weight | Increase of 0.77% in V ₂ /F per 1-kg increase above the median weight of 80 kg (and vice versa) | Weight has no effect on AUC _{ss} | | Hemoglobin | Decrease of 4.0% in V ₂ /F per 1 g dL ⁻¹ increase above the median hemoglobin concentration of 14.3 g dL ⁻¹ (and vice versa) | Hemoglobin has no impact on AUCss | | Verapamil | Increase of 23% in bioavailability with coadministration of verapamil | Patients with coadministration of verapamil have 23% increased AUC_{ss} | | Amiodarone | Increase of 12% in bioavailability with coadministration of amiodarone | Patients with coadministration of amiodarone have 12% increased AUC _{ss} | | PPIs | Decrease of 12.5% in bioavailability with coadministration of PPI | Patients with coadministration of PPI have 12.5% decreased AUC_{ss} | CRCL, creatinine clearance; HF, heart failure; PPI, proton-pump inhibitor. For the calculation of the effect of a particular covariate, all other covariates are assumed to have no effect (i.e. either at the median value or not present, e.g. in case of comedications). # 3.2. Pharmacokinetic Effect of Dabigatran in Japanese and Caucasian A. Cmax and total AUC after oral administration of dabigatran etexilate 150 mg B. Anti-coagulation parameters vs plasma concentration of dabigatran 0 C. Correlation between trough plasma concentration and dabigatran dose The pharmacokinetics of dabigatran are similar in Japanese and Caucasian subjects. # 3.3. Absolute Risk Reduction in Efficacy with NOACs vs Warfarin #### Stroke and Systemic Embolism Ischemic Stroke #### **Hemorrhagic Stroke** ## 3.3. Absolute Risk Reduction in Safety with NOACs with Warfarin ### **Summary** - NOACs은 specific target을 갖는 항응고제이다. - NOACs은 비슷하면서도 각자 조금씩 다른 약리학적 성질을 갖고 있다. 그러므로 이를 잘 이해하여 약물을 선택하여야겠다. ## 감사합니다.