대한심장학회 춘계학술대회, 경주 2017.4.22

Session: Current advances of management in vascular disease

Anti-inflammatory Strategies for Preventing CV Events

고대 구로 병원 심혈관센터 김응주

Anti-inflammatory Strategies for Preventing CV Events

Contents

Ann Rheum Dis 2012;71:1524-9

European Heart Journal (2015) 36, 482–489

Twenty male New Zealand white rabbits (12 weeks old at the beginning of the experiment)

1% Chol. diet N=5

1% chol. diet + 1%CGN/SC q 3wk For 3 mo N=5

Kim & Seo et al PLoS One. 2014 ;9:e97841

- MI accelerates atherosclerosis (ApoE KO mice)
- The inflammatory linkage between the BM, spleen and blood following an AMI may intensify the chronic inflammatory process involved in atherosclerosis, independently from the primary myocardial wound site.

MC

GURO HOSPITAL

Organ networks that lead to acceleration of atherosclerotic disease after MI

Science. 2013;339:161-66.

Kim & Seo et al. Circulation CV Imaging. 2014;7:454-60.

Anti-inflammatory Strategies for Preventing CV Events

Contents

NSAIDs & CV Risk, mechanism

N Eng J Med. 2004;351:1709-11, N Eng J Med. 2001;345:433-42 Clin Exp Rheumatol. 2001;19:S41-4

U.S. Food and Drug Administration Protecting and Promoting Public Health

www.fda.gov

Non-steroidal Anti-inflammatory Drugs and Thrombotic Cardiovascular Events Findings from Epidemiological Studies

Joint Meeting of the Arthritis Advisory Committee and Drug Safety and Risk Management Advisory Committee February 10-11, 2014

Andrew D. Mosholder, MD, MPH Medical Officer FDA Center for Drug Evaluation and Research Office of Pharmacovigilance and Epidemiology Division of Epidemiology II

Modified from US FDA

NSAIDs & Thrombotic CV Event Risk

Questions

- **1.** Does thrombotic CV risk vary by compound?
- **2.** Is risk present from the start of NSAID Tx?
- **3.** Are there patient subgroups who are more vulnerable to risk?
- **4.** Do higher dosages convey more risk?

NSAIDs & Thrombotic CV Event Risk

1. Does thrombotic CV risk vary by compound?

- Findings from epidemiology studies vary
- More data are available on frequently used NSAIDs
- In general, some frequent patterns across studies:
 - Lower thrombotic CV risk estimates: naproxen
 - Higher thrombotic CV risk estimates: diclofenac, rofecoxib
- Risk estimates reflect not only the compound but the doses at which it was used in the study
- Differences in CV risk estimates by compound could reflect use by different types of patients

CV risk vary by compound?

KU

GURO HOSPITAL

RR Estimates For MI: SOS Meta-analysis of 25 Observational Studies of NSAIDs

(reference: nonusers o 'emote NSAID users)

Varas-Lorenzo et al. Pharmacoepidemiol. Drug Saf. 2013

CV risk vary by compound?

Risk Estimates by Compound for Higher Dose Levels

RR for CV events vs. placebo, CNT clinical trial metaanalysis RR for CV events vs. nonuse or remote use: observational study meta-analysis

CNT Collaboration, Lancet 2013 ; PLoS Med. 2011

www.fda.gov

1. Does thrombotic CV risk vary by compound?

- Evaluation is confounded by dose, however:
- Lesser risks generally seen with naproxen

NSAIDs & Thrombotic CV Event Risk

2. Is risk present from the start of NSAID Tx?

- Various time courses for CV risk reported
- Different mechanisms may operate at different times
 - <u>Plt aggregation, reduced vasodilation</u> → immediate risk
 - Atherogenesis, vascular remodeling → long term risk
- In systematic review of NSAID observational studies, 9/12 studies
 new users showed elevated CV risk in 1st mo
- 2 clinical trials of coxibs given for 10-14 days after CABG found an increased risk of MI and stroke

Observational Studies of NSAIDs Finding No Latency of Thrombotic CV Risk

Initial time period associated with CV risk	Population	Outcome Risk estimate (CI)	NSAIDs showing increased CV risk	Reference
5.8 days (first quartile for duration of use)	Quebec residents <u>></u> 66 y.o., no past MI	Hospitalized MI RR=1.70 (1.26-2.31)	Rofecoxib	Levesque et al. 2006
1 week	Danish, Post MI	Death or re-MI HR=1.45 (1.29-1.62)	Multiple	Schjerning Olsen et al. 2011
1-2 weeks	Finnish adults	First MI OR=1.39 (1.23-1.58)	Not separated	Helin-Salmivaara et al. 2006
1 month	Australian veterans	Hospitalized MI IRR=1.31 (1.12-1.53)	Not separated	Pratt et al. 2010

RR rate ratio, HR hazard ratio, OR odds ratio, IRR incidence rate ratio

Observational Studies of NSAIDs Finding No Latency of Thrombotic CV Risk

Initial time period associated with CV risk	Population	Outcome Risk estimate (CI)	NSAIDs showing increased CV risk	Reference
1 month	Canadians without CV disease	MI or coronary death OR nap=2.84 (1.43–5.63) OR ibu=2.49 (1.12–5.53)	Naproxen & ibuprofen	Varas-Lorenzo et al. 2009
1 month	40-84 y.o. with no CV disease, UK	MI HR=3.43 (1.667.07)	Coxibs	Hammad et al. 2008
60 days	Penna. Medicare	Hospitalized MI or ischemic stroke RR=1.14 (1.01–1.29)	Rofecoxib	Solomon et al. 2006
1 st prescription	40+ y.o., UK	MI RR=1.23 (1.15–1.31)	Traditional NSAIDs	van Staa et al. 2008

RR rate ratio/relative rate, HR hazard ratio, OR odds ratio

Risk of Death/Re-MI Associated with NSAID Tx Population: Danish Post-MI Patients

Schjerning Olsen et al. Circulation 2011

Case-control Study of MI in Finland

Table 4 Risk of first time MI among current users of NSAIDs stratified by the duration of continuous therapy (days) in categories

	Cases	Controls	Unadjusted OR (95% CI)	Adjusted OR (95% CI) ^a
Non-users	20 645	92 524	1.00 (Reference)	1.00 (Reference)
Any NSAIDs				
1-14	542	1 509	1.55 (1.39-1.73)	1.39 (1.23-1.58)
15-30	436	1 3 4 4	1.37 (1.22-1.54)	1.22 (1.06-1.40)
31-90	670	1 807	1.43 (1.29-1.58)	1.25 (1.11-1.41)
91-180	631	1 551	1.74 (1.57-1.93)	1.54 (1.36-1.74)

Helin-Samivaara et al. Eur Heart J 2006

U.S. Food and Drug Administration Protecting and Promoting Public Health

www.fda.gov

2. Is risk present from the start of NSAID treatment?

Risk is observable from start of NSAID treatment

NSAIDs & Thrombotic CV Event Risk

3. Are there patient subgroups who are more vulnerable to risk?

- Post MI
- Heart Failure
- Hypertension
- Other CV risk factors
 - Clinically relevant increases in <u>CV events with NSAIDs</u> observable <u>both in vulnerable populations and apparently</u> <u>healthy</u> populations
 - Absolute risks substantially higher for vulnerable patients
 - <u>Relative risks</u> appear <u>similar</u> for high CV risk vs. healthy patients

Who are more vulnerable to risk?

Similar RR in Different CV risk groups

Outcome=MI, Ref= periods of no NSAID use

VA & Medicare Claims Analysis, Abraham et al., Aliment.Pharmacol.Ther. 2007

Who are more vulnerable to risk?

Estimated Person-years of NSAID use associated with 1 excess death (any cause), by Compound & Patient characteristics (unadjusted)

Compound	Post-MI patients	Heart failure patients	Healthy individuals
Rofecoxib	13	9	24
Celecoxib	14	14	24
Diclofenac	24	11	104
Ibuprofen	45	53	446
Naproxen	n.a.	51	1329

Danish National Healthcare Data, Gislason et al., Circulation 2006; Gislason et al. Arch Intern Med 2009; Fosbøl et al. CPT 2009

U.S. Food and Drug Administration Protecting and Promoting Public Health

www.fda.gov

3. Are there patient subgroups who are more vulnerable to risk?

<u>Vulnerable patients</u> experience <u>more CV events</u>, <u>but</u>
 CV events are <u>also increased in healthy individuals</u>

Modified from US FDA

NSAIDs & Thrombotic CV Event Risk

4. Do higher dosages convey more risk?

RR for serious CV events by dose (observational study meta-analysis)

McGettigan & Henry, PLoS Medicine 2011

Higher dosage, More risk ?

Higher dosage, More risk ?

* 1'outcome = death from CV causes, including hemorrhagic death; nonfatal MI; or nonfatal stroke

N Eng J Med 2016;375:2519-29

Higher dosage, More risk ?

www.fda.gov

4. Do higher dosages convey more risk?

 Higher dosages are observed to convey greater risk

<NSAIDs & Thrombotic CV Event Risk>_1

Prescription NSAID Labels includes the following Information:

- The <u>risk of heart attack</u> or stroke can occur as early as the first weeks of using an NSAID. The risk may increase with longer use of the NSAID.
- The risk appears greater at higher doses.
- Newer information makes it less clear that the risk for heart attack or stroke is similar for all NSAIDs; however, this newer information is not sufficient for us to determine that the risk of any particular NSAID is definitely higher or lower than that of any other particular NSAID.
- NSAIDs can increase the risk of heart attack or stroke in patients with or without heart disease or risk factors for heart disease.

<NSAIDs & Thrombotic CV Event Risk>_2

Prescription NSAID Labels includes the following Information:

- In general, patients with heart disease or risk factors for it have a greater likelihood of heart attack or stroke following NSAID use than patients without these risk factors because they have a higher risk at baseline.
- Patients treated with NSAIDs following a first heart attack were more likely to die in the first year after the heart attack compared to patients who were not treated with NSAIDs after their first heart attack.
- There is an increased risk of heart failure with NSAID use.

FDA Drug Safety Communication https://www.fda.gov/Drugs/DrugSafety/ucm451800.htm

Anti-inflammatory Strategies for Preventing CV Events

Contents

Eur Heart J 2014;35:1782–91

Circulation 2005;111:1355-1361

IL-6 & future vascular events

cases 122 151 152 163 188 190 202 210 217 239 265 304			-	1.36 (1.04, 1.31 (1.06, 1.67 (1.42, 1.68 (1.30, 1.27 (1.09, 1.29 (1.07, 1.39 (1.05, 1.24 (1.03, 1.03 (0.91, 1.02 (0.81,
122 151 152 163 188 190 202 210 217 239 265 304			-	1.36 (1.04, 1.31 (1.06, 1.67 (1.42, 1.68 (1.30, 1.27 (1.09, 1.29 (1.07, 1.39 (1.05, 1.24 (1.03, 1.03 (0.91, 1.02 (0.81,
151 152 163 188 190 202 210 217 239 265 304			_	1.31 (1.06, 1.67 (1.42, 1.68 (1.30, 1.27 (1.09, 1.29 (1.07, 1.39 (1.05, 1.24 (1.03, 1.03 (0.91, 1.02 (0.81,
152 163 188 190 202 210 217 239 265 304			_	1.67 (1.42, 1.68 (1.30, 1.27 (1.09, 1.29 (1.07, 1.39 (1.05, 1.24 (1.03, 1.03 (0.91, 1.02 (0.81,
163 188 190 202 210 217 239 265 304			_	1.68 (1.30, 1.27 (1.09, 1.29 (1.07, 1.39 (1.05, 1.24 (1.03, 1.03 (0.91, 1.02 (0.81,
188 190 202 210 217 239 265 304				1.27 (1.09, 1.29 (1.07, 1.39 (1.05, 1.24 (1.03, 1.03 (0.91, 1.02 (0.81,
190 202 210 217 239 265 304	-		_	1.29 (1.07, 1.39 (1.05, 1.24 (1.03, 1.03 (0.91, 1.02 (0.81,
202 210 217 239 265 304				1.39 (1.05, 1.24 (1.03, 1.03 (0.91, 1.02 (0.81,
210 217 239 265 304	+	-		1.24 (1.03, 1.03 (0.91, 1.02 (0.81,
217 239 265 304	-	<u> </u>		1.03 (0.91, 1.02 (0.81,
239 265 304	-	<u> </u>		1.02 (0.81,
265 304				
304				1.10 (0.91,
				1.34 (1.04,
304	<u> </u>			1.28 (1.02,
370				1.44 (1.23,
382	- 1	_		1.25 (1.07.
503	<u> </u>			1.19 (1.04.
1768	-			1.17 (1.10,
5730		0		1.27 (1.19,
		i i		
151 [£]				1.21 (1.07.
152				1.07 (0.90,
198				1.13 (0.92,
217	_			1.24 (1.04.
225				1.66 (1.22.
435				1.13 (1.03
469			-	1.44 (1.20.
405		_		1.30 (1.12)
2252	7	\diamond		1.23 (1.13,
7982		\diamond	>	1.25 (1.19,
T	\rightarrow			
0.6 0.	.8 1	1.5	2	3
	304 304 304 370 382 503 1768 5730 151 [£] 152 198 217 225 435 469 405 2252 7982 7982	205 304 304 307 382 503 1768 5730 151 [£] 152 198 217 225 435 469 405 2252 7982 0.6 0.8 1 RR (95% Cl) per-5	265 304 304 370 382 503 1768 5730 151 [£] 152 198 217 225 435 469 405 2252 7982 0.6 0.8 1 1.5 RB (95% Cl) per-SD bigber log ll	265 304 304 370 382 503 1768 5730 151 ⁶ 152 198 217 225 435 469 405 2252 7982 0.6 0.8 1 1.5 2 BR (95% Cl) per-SD higher log IL-6

Eur Heart J 2014;35:578-89

Genetic polymorphism in IL-6 regulatory pathway associate with lower CRP & with future lower vascular events

Lancet 2012;379:1205-13, 1214-24

Clinical trials of anti-inflammatory therapy in CVD

Drug	Target	Trial	Size	Sponsor	Status
A. Agents imp	pacting on the	e IL-6 signalling	pathway		
Canakinumab Methotrexate	IL-1β IL-6.TNF	CANTOS	10000 7000	Novartis NHLBI	Enrolling Enrolling
Anakinra	IL-1Ra	IL-HEART	190	UK-MRC	Completed
Colchicine	multiple	LoDoCo	532	HRS, Aus	Positive
Tocilizumab	IL-6	Entracte	3000	Hoffmann	Enrolling
Etanercept	TNF	Entracte	3000	Hoffmann	Enrolling

Succinobucol	Ox-LDL	ARISE	6144	AtheroGenics	Negative
Varespladib	sPLA ₂	VISTA-16	5000	Anthera	Negative
Darapladib	Lp-PLA ₂	STABILITY	15000	GSK	Enrolled
Darapladib	Lp-PLA ₂	SOLID-TIMI-52	13000	GSK	Enrolled
Inclacumab	P-Selectin	SELECT-ACS	544	Roche	Completed
Inclacumab	P-Selectin	SELECT-CABG	380	Roche	Enrolled

Journal of Cardiology 2015;66:1–8

Trans Am Clin Climatol Assoc. 2013;124:174–90.

Journal of Cardiology 2015;66:1-8

Tx with LDM inhibits Atherogenesis in cholesterol-fed Rabbits

MC

GURO HOSPITAL

Thinner intima **VSMC** MØ MMP-9

LDM

J Cardiovasc Pharmacol 2012;59:308–314

• A meta-analysis for the patients with RA or PsA (psoriatic arthritis) taking LDM: RRR 21% for CVD

Am J Cardiol 2011;108:1362-1370

Trans Am Clin Climatol Assoc. 2013; 124: 174–190.

Clinical trials of anti-inflammatory therapy in CVD

Drug	Target	Trial	Size	Sponsor	Status
A. Agents in	npactin <mark>g on the</mark>	e IL-6 signalling	pathway		
Canakinumab Methotrexate	IL-1β IL-6,TNF	CANTOS CIRT	10 000 7 000	Novartis NHLBI	Enrolling Enrolling
Anakinra	IL-1Ra	IL-HEART	190	UK-MRC	Completed
Colchicine Tocilizumab Etanercept	multiple IL-6 TNF	LoDoCo Entracte Entracte	532 3 000 3 000	HRS, Aus Hoffmann Hoffmann	Positive Enrolling Enrolling
B. Agents in	npactin <mark>g on alt</mark>	ernative inflam	matory path	ways	
Succinobucol Varespladib	Ox-LDL sPLA ₂	ARISE VISTA-16	6144 5000	AtheroGenics Anthera	Negative Negative

Succinobucol	Ox-LDL	ARISE	6144	AtheroGenics	Negative
Varespladib	sPLA ₂	VISTA-16	5000	Anthera	Negative
Darapladib	Lp-PLA ₂	STABILITY	15000	GSK	Enrolled
Darapladib	Lp-PLA ₂	SOLID-TIMI-52	13000	GSK	Enrolled
Inclacumab	P-Selectin	SELECT-ACS	544	Roche	Completed
Inclacumab	P-Selectin	SELECT-CABG	380	Roche	Enrolled

The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA

A phase II, doubleblinded, RCT recruited 182 NSTE-ACS patients : negative

Eur Heart J 2015;36:377-84

Clinical trials of anti-inflammatory therapy in CVD

Drug	Target	Trial	Size	Sponsor	Status
A. Agents imp	pactin <mark>g on the</mark>	e IL-6 signalling	pathway		
Canakinumab Methotrexate Anakinra Colchicine	IL-1β IL-6,TNF IL-1Ra multiple	CANTOS CIRT IL-HEART LoDoCo	10 000 7 000 190 532	Novartis NHLBI UK-MRC HRS, Aus	Enrolling Enrolling Completed Positive

Colchine has several anti-inflammatory properties

- Anti-tubulin effects inhibiting neutrophil function
- Modest effect on NLRP3 inflammasome → ↓ CRP

LoDoCo trial

- 532 pts with stable CAD, PROBE open-label study
- 1' EP=recurrent ACS, cardiac arrest, non-embolic stroke

- > 20% were intolerant & stopped Tx due to adverse GI effects
- Large-scale, fully blinded trials of colchicine in secondary prevention are warranted

Clinical trials of anti-inflammatory therapy in CVD

Drug	Target	Trial	Size	Sponsor	Status
A. Agents imp	pacting on the	e IL-6 signalling	pathway		
Canakinumab	IL-1β	CANTOS	10 000	Novartis	Enrolling
Methotrexate	IL-6,TNF	CIRT	7 000	NHLBI	Enrolling
Anakinra	IL-1Ra	IL-HEART	190	UK-MRC	Completed
Colchicine	multiple	LoDoCo	532	HRS, Aus	Positive
Tocilizumab	IL-6	Entracte	3 000	Hoffmann	Enrolling
Etanercept	TNF	Entracte	3 000	Hoffmann	Enrolling

- Moderate-severe RA pt (>=50 yr) with Hx of CAD or multiple CV risk factors
- IL-6 (tocilizumab) vs. TNF (etanercept) target, No placebo
- Whether results can generalize is uncertain

Clinical trials of anti-inflammatory therapy in CVD

- ARISE (Pt with recent ischemia, phase III, RCT, n=6144) 1'EP=MACE
 - Either succinobucol (anti-oxidant) or placebo
 - No benefit for 1'EP
 - Increased AE: hemorrhage, lipid, HTN, AF
- VISTA-16 (ACS pt, double-blind RCT, n=5145) 1'EP=MACE
 - Either varespladib (sPLA2 inhibitor) or placebo
 - Stopped early due to **no benefit**

B. Agents impacting on alternative inflammatory pathways

Succinobucol Varespladib	Ox-LDL sPLA ₂	ARISE VISTA-16	6144 5000	AtheroGenics Anthera	Negative Negative
Darapladib	Lp-PLA ₂	STABILITY	15000	GSK	Enrolled
Darapladib	Lp-PLA ₂	SOLID-TIMI-52	13000	GSK	Enrolled
Inclacumab	P-Selectin	SELECT-ACS	544	Roche	Completed
Inclacumab	P-Selectin	SELECT-CABG	380	Roche	Enrolled

Clinical trials of anti-inflammatory therapy in CVD

- STABILITY & SOLID-TIMI 52 (phase III, RCTs)
 - Efficacy and safety of the **darapladib** (Lp-PLA2 inhibitor), in patients with stable CHD and ACS, respectively
 - In both studies, darapladib **failed** to reduce the risk of major coronary events as compared to placebo.
 - Significantly higher rates of drug discontinuation, and adverse side effects such as diahrrea and malodorous feces, urine, and skin, as compared to placebo
 - Suggest that <u>Lp-PLA2</u> may be a biomarker of vascular inflammation rather than a causal pathway of cardiovascular (CV) diseases.
 - B. Agents impacting on alternative inflammatory pathways

Succinobucol Varespladib	Ox-LDL sPLA ₂	ARISE VISTA-16	6144 5000	AtheroGenics Anthera	Negative Negative
Darapladib	Lp-PLA ₂	STABILITY	15000	GSK	Enrolled
Darapladib	Lp-PLA ₂	SOLID-TIMI-52	13000	GSK	Enrolled
Inclacumab	P-Selectin	SELECT-ACS	544	Roche	Completed
Inclacumab	P-Selectin	SELECT-CABG	380	Roche	Enrolled

Clinical trials of anti-inflammatory therapy in CVD

- SELECT-ACS (Phase II, NSTEMI, n=544)
 - Inclacumab (P-selectin antibody) or placebo
 - 5 mg/kg-no effect ; 20 mg/kg- ↓Troponin, CK-MB
- SELECT-CABG (Phase II, scheduled CABG, n=384)
 - 1'efficacy= % of SVG stenosis >50% @1yr
 - Inclacumab (P-selectin antibody, 20 mg/kg) or placebo
 - No benefit for 1'Efficacy (placebo 26.4% vs. test 22.4%), MACE

Etanercept	TNF	Entracte	3000	Hoffmann	Enrolling	
B. Agents impacting on alternative inflammatory pathways						
Succinobucol	Ox-LDL	ARISE	6 144	AtheroGenics	Negative	
Varespladib	sPLA ₂	VISTA-16	5 000	Anthera	Negative	
Darapladib	Lp-PLA ₂	STABILITY	15 000	GSK	Enrolled	
Darapladib	Lp-PLA ₂	SOLID-TIMI-52	13 000	GSK	Enrolled	
Inclacumab	P-Selectin	SELECT-ACS	544	Roche	Completed	
Inclacumab	P-Selectin	SELECT-CABG	380	Roche	Enrolled	

Immunization for Atherosclerosis

Kuang-Yuh Chyu, MD, PhD,

Model	Immune component	Effect on atherosclerosis
ApoE/RAG-1	T and B cell deficiency	Decrease; no effect if mice on high-fat diet
ApoE/RAG-2	T and B cell deficiency	No effect
LDLR/RAG-1	T and B cell deficiency	Delayed
ApoE/SCID	T and B cell deficiency	Decrease
ApoE/CD1d	Natural killer T cell deficiency	Decrease
ApoE/CD1d	Natural killer T cell deficiency	Decrease
LDLR/complement 3	Defect in classical and alternative pathways	Increase
ApoE/complement 5	Defect in terminal complement complex	No effect
ApoE/Myd-88 or ApoE/TLR4	Defect in innate immunity	Decrease
ApoE/Myd-88	Defect in innate immunity	Decrease
Splenectomy in ApoE-/- mice	Defect in adaptive immunity	Increase
B cell deficiency in LDLR-/- mice	Defect in adaptive immunity	Increase

Curr Atheroscler Rep. 2007;9:104-9

Immunization for Atherosclerosis

Kuang-Yuh Chyu, MD, PhD, Jan Nilsson, MD, PhD, and Prediman K. Shah, MD

List of immunogens that have been used in immunization studies

Heat shock protein 65 [60-62]

β2-glycoprotein I [63]

Atheroprotection via active immunization

Native low-density lipoprotein [31,64]

Malondialdehyde-low-density lipoprotein [65,66]

Apolipoprotein B-100 peptides [36,37]

Phosphorylcholine head group on oxidized phospholipid [11]

Cholesteryl ester transfer protein [49,67]

- The inflammatory system is simultaneously redundant, compensatory, and crucial for survival
- Evaluation of risks as well as benefits must drive the development of anti-inflammatory therapies in this class (eg. COX-2 inhibitor)
- However, as proven among these with RA and inflammatory bowel disease, long-term treatment with systemic anti-inflammatory agents can be accomplished safely
- In addition to the therapies described here, multiple alternative approaches to inflammation inhibition are being developed
 - targeted steroid delivery systems such as Nanocort
 - infusion of reconstituted HDL-c
 - imaging-based approaches to inflammation detection and targeted intervention
 - Gene-based therapy

- The <u>near future</u> will see publication of several massive trials directly testing the inflammatory hypothesis of atherosclerosis
- The core results of these trials—including those that do and do not inhibit the central IL-1, TNF-a, and IL-6 pathway—will tell us a great deal about whether anti-inflammatory therapies will eventually become a cornerstone of vascular risk reduction
- If successful, these trials will usher in a new era in which the treatment of chronic vascular disease moves <u>beyond the reduction</u> <u>of LDL-cholesterol alone</u>.

감사 합니다.

