Losartan의 항혈소판 효과 고려대학교 구로병원 심혈관센터 서 홍 석 ## Hypertensive Patients Are at Increased Risk for Cardiovascular Events Framingham Heart Study - Risk of Cardiovascular Events by Hypertensive Status in Patients Aged 35-64 Years; 36-Year F-U Kannel WB JAMA 1996;275(24):1571-1576. ## Benefits of Lowering BP | | Average Percent Reduction | |-----------------------|----------------------------------| | Stroke incidence | 35–40% | | Myocardial infarction | 20–25% | | Heart failure | 50% | #### Causes of deaths in Korea, 2004 Data: National Statistical Office, Korea ### 뇌졸중의 역학적 특성 - 노령(>65세) 에서 흔히 발병 - 100-300/100,000 per year - 높은 사망률 (국내 2위) - 치명율 8-20% (<30 days) - 빈번한 후유장해 - 높은 재발 위험 - 1st 30 days: 3-10% - Long-term: 4-14% / yr - * 심각한 부담 (가족, 사회, 국가) ## 노령화와 뇌졸중의 발병률 (추정) ## 주요 위험인자의 유병률과 위험도 | Factor | Prevalence, % | Relative Risk | |--|---------------|--------------------------------| | Hypertension | 25-40 | 3-5 | | Elevated total cholesterol level
(>240 mg/dL [6.21 mmol/L]) | 6-40 | 1.8-2.6 | | Smoking | 25 | 1.5 | | Physical inactivity | 25 | 2.7 | | Obesity | 18 | 1.8-2.4 | | Asymptomatic carotid stenosis (>50%) | 2-8 | 2 | | Alcohol consumption (>5 drinks/d) | 2-5 | 1.6 | | Atrial fibrillation | 1 | 5 (nonvalvular); 17 (valvular) | ## The Losartan Intervention For Endpoint Reduction in Hypertension Study A multicenter, multinational, double-blind, randomized, parallel study to investigate the effect of losartan, compared to atenolol, on the reduction of cardiovascular morbidity and mortality in hypertensive patients with left ventricular hypertrophy. ## LIFE: Key Inclusion Criteria - Age 55-80 years - Elevated blood pressure - Systolic BP 160-200 mm Hg or Diastolic BP 95-115 mm Hg - ECG LVH - Cornell Voltage DurationProduct or Sokolow-Lyon Criterion ## LIFE: Baseline Characteristics (I) | | Losartan
(N=4605) | Atenolol
(N=4588) | |-------------------------|----------------------|----------------------| | Age (mean), years | 66.9 | 66.9 | | Gender, % female | 54.0 | 54.0 | | Systolic BP, mm Hg | <u>174.3</u> | <u>174.5</u> | | Diastolic BP, mm Hg | <u>97.9</u> | <u>97.7</u> | | Pulse rate, bpm | 73.9 | 73.7 | | BMI, kg/cm ² | 28.0 | 28.0 | | Smokers, % | 15.8 | 16.8 | ## LIFE: Baseline Characteristics (II) #### **Medical History** | | Losartan %
(N=4605) | Atenolol %
(N=4588) | |---|------------------------|------------------------| | Diabetes mellitus | 12.7 | 13.3 | | ISH (≥160 / <90 mm Hg) | 14.3 | 14.5 | | Coronary heart disease
Myocardial infarction | 16.7
6.7 | 15.2
5.7 | | Cerebrovascular disease
Stroke | 8.2
4.1 | 8.0
4.6 | ## LIFE: Comparable BP Reductions Dahlöf B et al *Lancet* 2002;359:995-1003. #### Fatal and Non-Fatal Stroke ### LIFE: ISH – Fatal/Nonfatal Stroke # Cardiovascular effects of losartan primarily due to stroke reduction LIFE # Reduction in Risk of Stroke in Patients with AF Dalhöf B et al. Presented at the European Society of Cardiology Congress; Berlin, Germany; August 31–September 4, 2002. Poster 2163. #### Platelet activation in hypertension Blann, A. D. et al. Hypertension 2003;42:1-7 # Induction of Inflammation & Arterial Thrombosis #### **Changes Seen in Platelets With Hypertension** #### Morphological changes Increased volume Change in shape Increased turnover #### Biochemical changes Increased intracellular free calcium Decreased calmodulin levels Increased sensitivity to catecholamines Higher density of adrenoceptors Decreased levels of intracellular catecholamines and serotonin #### Functional changes Increased aggregability to agonists such as collagen and ADP Increased adhesiveness to molecules such as vitronectin and fibrin Increased spontaneous aggregation Increased expression of membrane markers, such as P-selectin Increased release of soluble markers from granules, such as beta thromboglobulin #### **β-Blockers**, α-Blockers, and Platelet Function | ß-Blockers | | | | |-----------------------|--------------------------------|----------------------------------|------------| | Propranolol 80 mg BID | Hansen et al ⁶¹ | ADP-induced aggregation | Increased | | Propranolol 40–120 mg | Ding et al ⁶⁹ | ß thromboglobulin | Reduced | | | | Multiple aggregations | No effect | | Propranolol 80 mg BID | Winther et al ⁵² | ADP-induced aggregation | Increased | | Propranolol | Larsson et al ⁴⁴ | Aggregability | No change | | Bopindolol 1 mg BID | Winther et al ⁶² | ADP-induced aggregation | No change | | Metoprolol 100 mg BID | Winther et al ⁶³ | ADP-induced aggregation | No change | | Atenolol 100 mg | Gleerup et al ⁷⁰ | ß thromboglobulin | Reduced | | | Smith et al ⁷¹ | ß thromboglobulin | Reduced | | Atenolol 80 mg | | Multiple aggregations | No change | | Atenolol 50 mg | Knight et al ⁷² | Aggregation | Increased | | α-Blockers | | | | | Prazosin 2–8 mg | Okrucka et al ⁶⁴ | ADP-induced aggregation | No change | | Urapidil | Spah et al ⁶⁵ | ADP-induced aggregation | Decrease | | Terazosin 1–4 mg | Hernandez et al ⁶⁶ | ADP-induced aggregation | No change | | Doxazosin | Hernandez et al ⁶⁷ | ADP-induced aggregation | Decreased | | Doxazosin | Hernandez et al ⁶⁸ | ADP-induced aggregation | Decreased | | Phentolamine | Kimura and Okuda ⁵⁹ | Epinephrine-induced calcium flux | Inhibition | #### **Calcium Channel Antagonists and Platelet Function** | Nifedipine 20–40 mg
BID | Birkebaek et al ⁷⁹ | Platelet factor 4 | No change | |----------------------------|--|---|---------------| | Isradipine 2.5 mg | Gleerup et al ¹⁵ | ADP-induced aggregation | Decreased | | | Gleerup et al ⁷⁰ | ß thromboglobulin | Decreased | | | | Platelet factor 4 | Decreased | | Diltiazem 60–180 mg | Pechan et al ¹⁰⁰ | ADP-induced aggregation | Decreased | | Nitrendipine 10–20 mg | Muller et al ⁸² | Platelet adrenoceptors | No change | | Felodipine | Sengelov et al ¹⁰² | Platelet factor 4 | Decreased | | Amlodipine 10 mg | Hernandez-Hernandez
et al ⁸³ | ADP-induced aggregation | Decreased | | Verapamil 80–200 mg | Ding et al ⁶⁹ | ß thromboglobulin | Decreased | | | | Multiple aggregations | No effect | | Verapamil | Addonizio et al ¹⁰³ | ADP-induced aggregation | Decreased | | Efonidipine 40 mg | Nomura et al ²¹ | Soluble P-selectin, CD62 ⁺ platelets, microparticles | All decreased | #### ACE Inhibitors, Angiotensin II Antagonists, and Platelet Function | ACE inhibitors | | | | |----------------------------------|---|-------------------------------|-----------| | Captopril 25 mg BID | Someya et al ⁷⁸ | ADP-induced aggregation | Decreased | | Captopril 25–50 mg BID | Birkebaek et al ⁷⁹ | ADP-induced aggregation, PF4 | No change | | Quinalapril 20 mg BID | Gupta et al ⁸⁰ | ADP-induced aggregation, PF4 | No change | | Enalapril 10–20 mg | Li-Saw-Hee et al ⁸¹ | ADP-induced aggregation, PF4 | No change | | Captopril 25–50 mg | Muller et al ⁸² | Platelet -adrenoceptors | Decreased | | Enalapril 20 mg | Hernandez-Hernandez et al ⁸³ | ADP-induced aggregation | Increased | | Angiotensin II antagonists | | | | | Losartan 50–100 mg | Li-Saw-Hee et al ⁸¹ | Soluble P-selectin | No change | | Losartan 50–100 mg | Pathansali et al ⁹¹ | Megakaryocyte size and ploidy | Decreased | | | | Bleeding time | Increased | | | | Aggregation | No effect | | Losartan 100 mg | Levy et al ⁸⁴ | Platelet aggregation | Decreased | | Losartan and valsartan | Kalinowski et al ⁷⁷ | NO release in vitro | Increased | | | | Collagen-induced aggregation | Decreased | | | | | | | PF4 indicates platelet factor 4; | NO, nitric oxide. | | | #### Losartan-dependent Inhibition of Platelet Aggregation in vivo Effect of in vivo treatment of SHRSP with AT-1 antagonists on ex vivo platelet adhesion | Platelets | Platelet adhesion (%) | |---------------------|-----------------------| | WKY | 4.1 ± 2.3 | | SHRSP | 22.7 ± 4.8^a | | SHRSP + losartan | $8.1 \pm 2.1^{a,b}$ | | SHRSP + valsartan | 18.3 ± 4.0^a | | SHRSP + candesartan | 21.0 ± 4.3^a | Platelets were obtained from normotensive Wistar–Kyoto rats (WKY), stroke-prone spontaneously hypertensive rats (SHRSP), losartan-treated SHRSP (SHRSP + LOS) rats, valsartan-treated SHRSP (SHRSP + VAL) rats, and candesartan-treated SHRSP (SHRSP + CAN) rats. Platelets $(5 \times 10^8 \text{ platelets/well})$ were then incubated at 37°C for 1 h on a synthetic surface. Results are represented as means \pm SEM. AT-1, angiotensin II type 1. $^{^{}a}$ p < 0.05 with respect to WKY. $^{^{}b}$ p < 0.05 with respect to untreated SHRSP. % of P-selectin expression in platelets obtained from Wistar–Kyoto rats, stroke-prone spontaneously hypertensive rats, and SHRSP treated with losartan, candesartan, and valsartan for 14 days. right shadowed white starp < 0.05 with respect to SHRSP. Jimenez: J Cardiovasc Pharmacol, Volume 37(4). April 2001.406-412 ## AT-1-induced Effect on Platelets Western blot demonstrating the presence of AT-1-type receptors in human platelets. Effect of ANG II and the blockade of AT-1 and AT-2 receptors on the antiplatelet effect of irbesartan and losartan | | Light transmission (%) | |-----------------------|------------------------| | | 72 ± 4" | | Losartan | 45 ± 3 | | Irbesartan | 42 ± 3 | | PD123319 | 75 ± 3^{a} | | Losartan + PD123319 | 44 ± 3 | | Irbesartan + PD123319 | 41 ± 4 | | Ang II | 74 ± 2^{a} | | Ang II + losartan | 44 ± 2 | | Ang II + irbesartan | 41 ± 2 | | EXP3174 + losartan | 43 ± 3 | | EXP3174 + irbesartan | 40 ± 4 | Platelets were activated with 10^{-6} M U446619 in the presence and in the absence of losartan (5 × 10^{-5} M), irbesartan (5 × 10^{-5} M), PD123319 (10^{-8} M), angiotensin II (Ang II, 10^{-7} M) and EXP3174 (5 × 10^{-5} M). Data are represented as mean \pm SEM of six different experiments. ^ap < 0.05 with respect to losartan and irbesartan alone. Monton: J Cardiovasc Pharmacol, Volume 35(6). June 2000.906-913 ## ADP-induced Effect on Platelets ADP-induced human platelet activation in the presence or absence of aspirin, losartan and captopril. Spontaneous platelet activation (< 5%) was not changed by any of the three substances. Data are means \pm SEM of 15 experiments. Guerra Cuesta: J Hypertens, Volume 17(3).March 1999.447–452 ^{*}P < 0.05, versus ADP alone. #### Effect of AT-1-receptor antagonist on ADP-induced platelet activation | | Light transr | mission (%) | |-------------|-----------------|--------------------| | | -ASA | +ASA | | | 62 ± 3 | 40 ± 3° | | Losartan | 39 ± 2^{a} | $38 \pm 3^{\circ}$ | | Irbesartan | 38 ± 4^{a} | $37 \pm 5^{\circ}$ | | Telmisartan | 48 ± 3^{ab} | $40 \pm 4^{\circ}$ | | EXP3174 | 54 ± 1^{ab} | 42 ± 3" | | Valsartan | 53 ± 3^{ab} | $42 \pm 5^{\circ}$ | | CV11974 | $60 \pm 5''$ | $39 \pm 3^{\circ}$ | Platelets were activated with 10^{-5} M ADP in the presence and in the absence of aspirin (ASA, 3×10^{-3} M), losartan (5×10^{-5} M), irbesartan (5×10^{-5} M), telmisartan (5×10^{-5} M), EXP3174 (5×10^{-5} M), valsartan (5×10^{-5} M), and CV11974 (5×10^{-5} M). Data expressed as mean \pm SEM of six different experiments. [&]quot;p < 0.05 with respect to ADP alone. $^{^{}b}p < 0.05$ with respect to losartan and irbesartan. TxB2 released by ADP-stimulated platelets | | TxB_2 (ng) | |---------------|------------------------| | 9 | 4.2 ± 0.3 | | Aspirin | $0.5 \pm 0.02^{\circ}$ | | Losartan | 4.0 ± 0.2 | | Irbesartan | 4.2 ± 0.2 | | Telmisartan | 4.1 ± 0.2 | | EXP3174 | 4.0 ± 0.1 | | Valsartan | 3.9 ± 0.2 | | CV11974 | 3.9 ± 0.3 | Platelets were activated with 10^{-5} M ADP in the presence and in the absence of aspirin (3 × 10^{-3} M) and the different AT-1-receptor antagonists. The concentration used for each AT-1 antagonist was 5 × 10^{-5} M. Data represent the mean \pm SEM of six different experiments. "p < 0.05 with respect to ADP-stimulated platelets. ### TXA2 inhibition Effect on Platelets ## U46619 -induced platelet activation in the presence of captopril or losartan. Inhibition of platelet activation by losartan or captopril 6 min after the addition of U46619 **P* < 0.05, versus U46619 alone. Guerra Cuesta: J Hypertens 1999.447–452 Displacement of [3H]-U46619 by unlabelled losartan and EXP 3174. The platelet suspension was incubated with 4 nmol/l[3H]-U46619 in the presence or absence of increased concentrations of losartan and EXP 3174. Specific binding was calculated using incubations with a 1000-fold excess of unlabeled U46619. Data are means \pm SEM of five experiments. *P < 0.05, versus EXP 3174; [white star]P < 0.05, versus no corresponding drug. Representative trace showing U46619-induced platelet activation in the presence and in the absence of losartan and irbesartan. Monton: J Cardiovasc Pharmacol, Volume 35(6). June 2000.906-913 Effect of increasing concentrations of losartan (A) and irbesartan (B) on thromboxane A2 analogue U46619-induced platelet activation. Platelet activation is plotted as percentage of light transmission 6 min after the addition of U46619. Data are expressed as mean \pm SEM of six different experiments. *p < 0.05 with respect to U46619 alone. Monton: J Cardiovasc Pharmacol, Volume 35(6). June 2000.906-913 Effect of increasing concentrations of valsartan and the main hepatic Active metabolite of losartan, EXP3174, on thromboxane A2 analogue U46619-induced platelet activation. Platelet activation is plotted as percentage of light transmission 6 min after the addition of U46619. Data are expressed as mean \pm SEM of six different experiments. *p < 0.05 with respect to U46619 alone. Monton: J Cardiovasc Pharmacol, Volume 35(6). June 2000.906-913 Displacement of [³H]-U46619 from platelets by unlabeled losartan, irbesartan, EXP3174, and telmisartan. Data are expressed as mean \pm SEM of six different experiments. *p < 0.05 with respect to EXP3174. [white star]p < 0.05 with respect to losartan and irbesartan. Monton: J Cardiovasc Pharmacol, Volume 35(6).June 2000.906-913 Displacement of [³H]-U46619 from platelets by unlabeled losartan, EXP3174, valsartan, and CV-11974. The platelet suspension was incubated with 4 nM [3H]-U46619 in the presence and in the absence of increasing concentrations of each AT-1 antagonist. p < 0.05 with respect to CV-11974 antagonists. [white star]p < 0.05 with respect to EXP3174 Monton: J Cardiovasc Pharmacol, Volume 35(6). June 2000.906-913 Effect of in vitro addition of different AT-1 antagonists on U46619-induced in vitro platelet activation | Platelets | Platelet adhesion (%) | |----------------------|-----------------------| | Basal | 4.0 ± 2.2 | | U46619 | 25.9 ± 1.9^a | | U46619 + losartan | $13.7 \pm 3.3^{a,b}$ | | U46619 + valsartan | 23.4 ± 2.1^a | | U46619 + candesartan | 24.8 ± 3.1^a | Platelets (5 × 10⁸ platelets/well) from normotensive Wistar–Kyoto rats were isolated and incubated in the absence (basal) and in the presence of the thromboxane analogue, U46619 (10⁻⁶ M) on a synthetic surface at 37°C for 1 h. Additional experiments were performed in the presence of losartan (5 × 10⁻⁶ M), valsartan (5 × 10⁻⁶ M), and candesartan (5 × 10⁻⁶ M). Results are represented as means ± SEM of six different experiments. Jimenez: J Cardiovasc Pharmacol, Volume 37(4). April 2001.406-412 $^{^{}a}$ p < 0.05 with respect to basal level. $^{^{}b}$ p < 0.05 with respect to U46619 in the absence of the angiotensin II type 1 (AT-1) antagonists. ### Collagen-induced Effect on Platelets #### Dose-dependent effect of losartan, EXP3174, and valsartan on collagenstimulated adhesion and U46619-stimulated aggregation of rat platelets in in vitro (a and b) and ex vivo (c and d) experiments Kalinowski, L. et al. Hypertension 2002;40:521-527 # Mechanism of anti-platelet action of Losartan #### NO release from platelets after stimulation with IP3 ## NO release from platelets in dose-dependent response to the AT1 receptor antagonists: losartan, EXP3174, and valsartan (n=6) #### Losartan-dependent Inhibition of PGF2 α in vivo ## Hypothetical Model of EXP3179 antiinflammatory and antiaggregatory properties