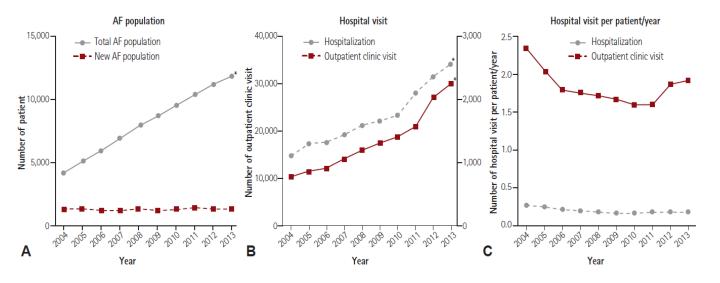
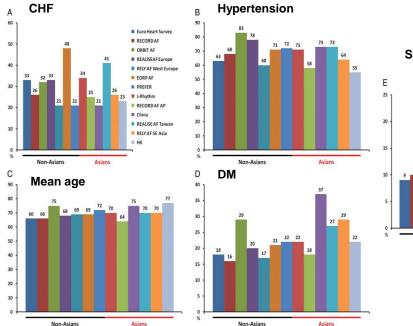
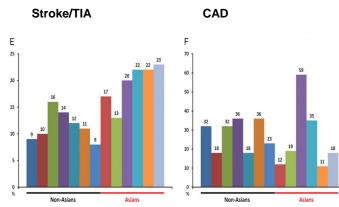
NOAC is More Effective in Asian AF Patients? : Con


Boyoung Joung, MD, PhD

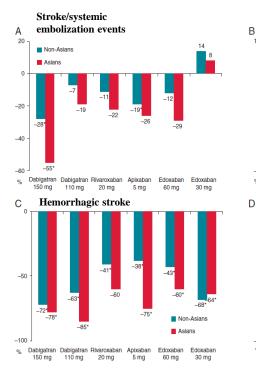
Professor, Division of Cardiology Director of Electrophysiology Laboratory Severance Cardiovascular Hospital Yonsei University College of Medicine

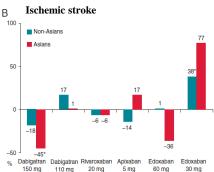
The Trends of Atrial Fibrillation-Related Hospital Visit and Cost, Treatment Pattern and Mortality in Korea : 10-Year Nationwide Sample Cohort Data

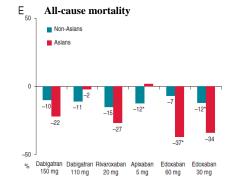

Lee H, Kim T, et al. Korean Circ J 2017;47:56-64

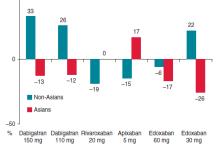


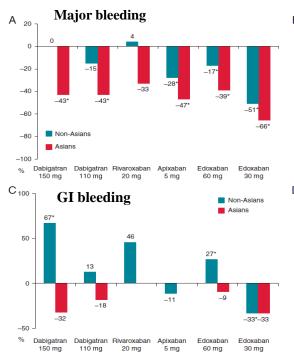
Racial Difference?

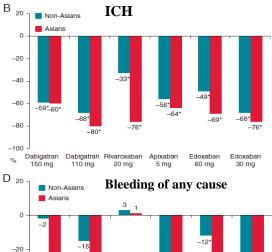

Prevalence of co-morbidities of AF in non-Asians and Asians

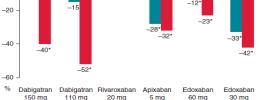




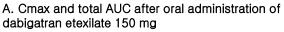

Relative risk reduction in five major efficacy endpoints in Asians and non-Asians



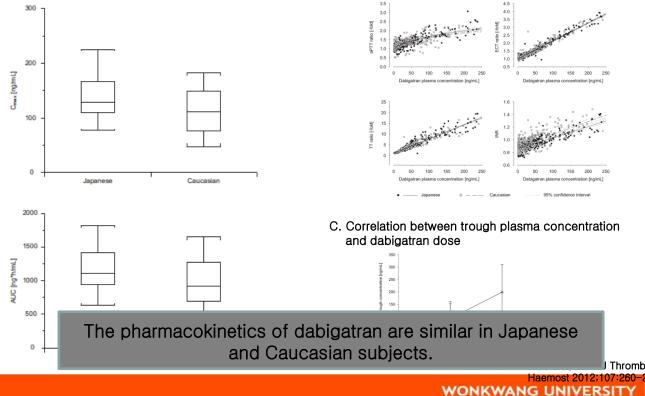

50 Myocardial infarction



Relative risk reduction in four major safety endpoints in Asians and non-Asians



Asian strategy for stroke prevention in AF


- Asian AF patients have similar cardiovascular co-morbidities as westerns, and the recently developed CHA2DS2-VASc score remains valid in predicting stroke risk in Asians, outperforming other scoring systems.
- There is little evidence supporting a role of aspirin in preventing AF-associated stroke in Asians.
- Warfarin is effective for the prevention of stroke in Asians, but is very difficult to use.
- Warfarin-induced bleeding events are more common in Asians. Warfarin produced higher risk of major bleeding and intra-cranial haemorrhage in Asians compared with those in non-Asians, even though anticoagulation intensity was lower in Asians.
- All these trials consistently demonstrated that NOACs were superior or non-inferior to warfarin. The benefits of NOACs were especially robust in Asians.
- There was no evidence of increased risk of gastro-intestinal bleeding associated with NOACs in Asians.
- Unless in a few conditions when NOACs are contraindicated, NOACs are preferred medications in the stroke prevention for AF in Asians.

Pharmacokinetic Effect of Dabigatran in Japanese and Caucasian

B. Anti-coagulation parameters vs plasma concentration of dabigatran

Higher Stroke Rate in Asian AF patients?

Stroke Rates among Studies Reporting CHA2DS2-VASc Stratified Results by Increasing Rate

	Women's Health Initiative (17)	Stockholm Area Database (20)	NHI	(18)	Cohort	J- Rhythm, Shinken, Fushimi (32)	Heart Survey	AF Study	General Practice Research Database (28)	Health Services	Hospital	Rhythm (44)	AVERROES ACTIVE-A, and ACTIVE-W * (45)	AF Cohort	NHIRD - 1996-	Danish National Patient Registry (6)	Mary Hospita
CHA2DS2- VASc Score																	
0		0.3	0.35	0.04	0	0.53	0	0.2	0.38	0.42	0	0.7			1.15	0.78	2.41
1	0.2	0.5	0.5	0.55	0.6	0.55	0.6	0.6	0.78	0.82	0.9	0.9	1.1	1.3	2.11	2.01	6.64
2	0.48		0.91	0.83	0.95	1.11	1.6	2.2	1.92	1.81	1.7	1.9	2.3	6.5‡	3.39	3.71	7.84
3	0.82		1.35	1.66	1.96	1.38	3.9	3.2	2.84	2.57	2.7	1.2	3.3‡		3.89	5.92	9.56
4	1.3		2.12	2.8	5.45	1.52	1.9	4.8	3.7	3.71	1.8	2.3			4.61	9.27	11.58
5	1.71		2.59	4.31	9.06	4.43	3.2	7.2	5.08	4.52	8.8	4.5			5.12	15.26	12.69
6	2.02		4.42‡	4.77	13.7‡	4.07	3.6	9.7	7.09	5.1	9	2			5.18	19.74	13.18
7				4.82		1.56	8	11.2	8.98	5.6		1.8			6.22	21.5	
8				7.82		6.95	11.1	10.8	9.01			0			7.98	22.38	
9				16.62		211	100	12.23	15.49			0			10.5	23.64	

Quinn et al. Circulation 2017

The CHA₂DS₂-VASc score for ischemic stroke and thromboembolic event rates in Asian patients with non-valvular AF : A nationwide sample cohort study using the Korean NHIS Data

		Korea NHIS Cohort Database					
	Low Risk (CHA ₂ DS ₂ - VASc 0 or 1 [Female])	Intermediate Risk (CHA ₂ DS ₂ -VASc 1 [Male])	High Risk (CHA_2DS_2 - VASc ≥ 2)	Total (n=5855)	Total (n=1084)	Total (n=73 538)	
Age, y	44±12	53±11	69±12	64±15	66±14	N/A	
<65	0 (0)	0 (0)	1561 (35.1)	2594 (44.3)	N/A	15130 (20.5)	
65–74	0 (0)	76 (13.8)	1624 (36.5)	1700 (29.0)	N/A	14544 (19.8)	
>75	860 (100)	474 (86.2)	1260 (28.3)	1561 (26.7)	309 (28.5)	43 864 (59.7)	
Women	446 (51.9)	0 (0)	2389 (53.7)	235 (48.4)	442 (40.8)	37 651 (51.2)	
CHA ₂ DS ₂ -VASc score	0.52±0.50	1.00	4.09±1.69	3.28±2.08	N/A	N/A	
History of TIA/ischemic stroke	0 (0)	0 (0)	1433 (32.2)	1433 (24.5)	97 (9.1)	13368 (18.2)	
Atherosclerotic disease		'					
Myocardial infarction	0 (0)	8 (1.5)	756 (17.0)	764 (13.0)	N/A	N/A	
Peripheral arterial disease	0 (0)	7 (1.3)	604 (13.6)	611 (10.4)	62 (5.8)	N/A	
Vascular disease	0 (0)	15 (2.7)	1191 (26.8)	1206 (20.6)	N/A	12873 (17.5)	
Heart failure	0 (0)	17 (3.1)	1852 (41.7)	1869 (31.9)	253 (23.5)	13126 (17.9)	
Hypertension	0 (0)	405 (73.6)	4017 (90.4)	4422 (75.5)	729 (67.3)	25060 (34.1)	
Diabetes mellitus	0 (0)	37 (6.7)	1131 (25.4)	1168 (19.9)	187 (17.3)	6496 (8.8)	
ESRD	2 (0.2)	5 (0.9)	82 (1.8)	89 (1.5)	N/A	N/A	
COPD	38 (4.4)	26 (4.7)	609 (13.7)	673 (11.5)	N/A	N/A	
Aspirin use	86 (10.0)	225 (40.9)	2325 (52.3)	2636 (45.0)	802 (74.0)	25 503 (34.7)	

Kim TH, Yang PS, Joung B, Lip G et al. Stroke 2017 (In press)

Ischemic stroke or the composite thromboembolism endpoint /100 person-years at risk in relation to CHA_2DS_2 -VASc scores in 5,855 patients without anticoagulation throughout follow-up

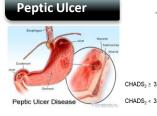
Korea NHIS Cohort Database (n=5855)							The Euro Heart Survey (n=1084)		Denmark Nationwide Cohort (n=73538)			
		lschemi	c Stroke	lschemic Stroke/Systemic Embolism			Ischemic Stroke/Systemic Embolism		stemic	lschemic Stroke/Systemic Embolism		temic
CHA ₂ DS ₂ - VASc Score	No. of Patients	Unadjusted	Adjusted for Aspirin*	Unadjusted	Adjusted for Aspirin*	CHA ₂ DS ₂ - VASc Score	Adjusted for Aspirin		Unadjusted			
0 (male) or 1 (female)	860	0.23	0.26	0.26	0.29	0		0			0.69	
1 (male)	550	1.04	1.18	1.20	1.35	1		0.7			1.51	
2	975	1.91	2.21	2.04	2.35	2		1.9			3.01	
3	911	2.54	2.88	2.67	3.04	3		4.7		4.41		
4	836	4.72	5.34	5.10	5.76	4		2.3		6.69		
5	770	5.79	6.54	5.98	6.76	5	3.9		10.42			
6	513	8.36	9.50	8.61	9.77	6	4.5		12.85			
≥7	440	8.82	9.97	9.03	10.21	≥7	11.4		14.0			
Total	5855	3.32	3.79	3.49	3.98	Total	2.3		5.29			

Kim TH, Yang PS, Joung B, Lip G et al. Stroke 2017 (In press)

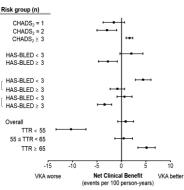
Stroke rate in OAC naïve AF patients

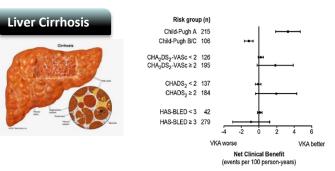
score	N, %	Stroke event	Mean duration until stroke event (year)	Mean follow- up duration (year)	Annual stroke rate
0 (male) or 1 (female)	131,638 (20.8)	6,990 (5.3)	2.09	6.48	0.82%
1 (male)	69,139 (10.9)	7,350 (10.6)	2.34	5.56	1.91%
2	112,002 (17.7)	13,960 (12.5)	2.25	5.55	2.25%
3	104,283 (16.5)	16,716 (16.0)	1.98	4.87	3.29%
4	87,109 (13.7)	15,814 (18.2)	1.79	4.32	4.20%
5	62,424 (9.9)	11,545 (18.5)	1.55	3.86	4.79%
6	38,124 (6.0)	7,286 (19.1)	1.17	3.52	5.44%
≥7	29,273 (4.6)	5,473 (18.7)	0.94	2.95	6.34%

Yang PS, Ryu S, Hwang J, Joung B, Lip G et al. (Unpublished)



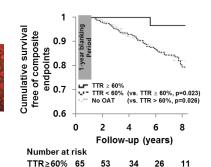
Aged Asian


Patients with High Risk of Bleeding?



High risk AF patients & OAC

Lee SJ. Am J Cardiol 2012;110:373-377 Lee SJ, et al. Medicine. 2016;95:47



Lee SJ. Int J Cardiol 2015;180:185-191

CANCER Lee YJ. Int J Cardiol 2015;203:372-8

261 156 44

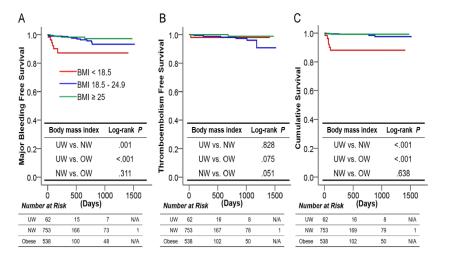
278 178 45

Park YH. Heart Rhythm 2016;13:1794-802

SEVERANCE CARDIOVASCULAR HOSPITAL

TTR<60%

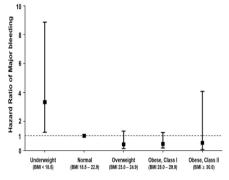
OAT-

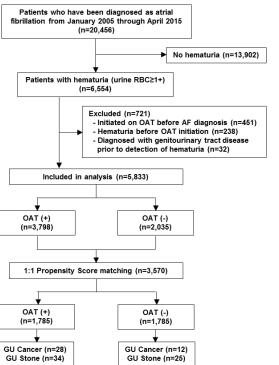

498 403

576 469

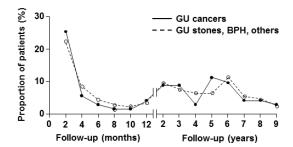
Association of body mass index (BMI) and major bleeding events

analyzed 1353 AF patients who were prescribed NOACs according to their BMI

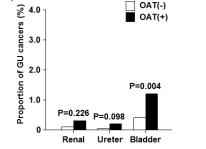


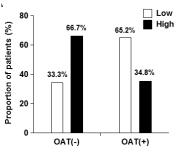

Figure 3 Association of body mass index (BMI) and major bleeding events. Patients were divided by obesity degree according to World Health Organization criteria. Risk on the y-axis is hazard ratio \pm 95% confidence intervals using Cox regression model.

Park C, Choi E, et al. Heart rhythm 2017;14:501-507



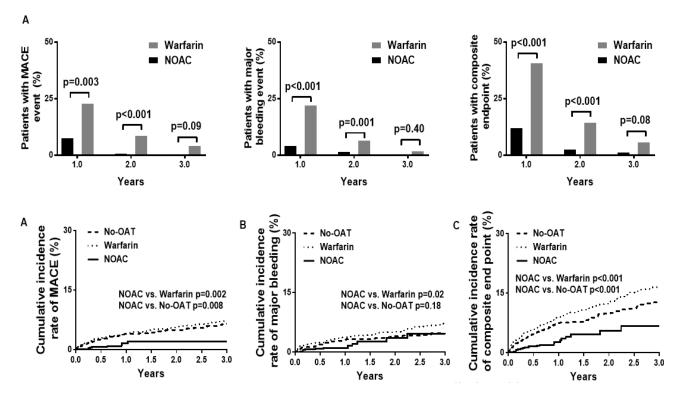
High risk AF patients & OAC


GU cancer and hematuria



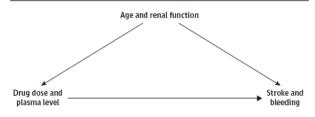
Hematuria detection time after OAT

Location of genitourinary cancers Pathologic grade of bladder cancer

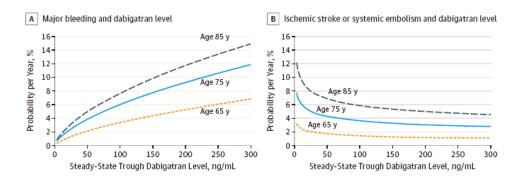


Yu HT, et al. Circ J. 2017;81:158-164

Proportion of patients with events according to the duration after cancer diagnosis for the PS matched population.



Kim K. AHA 2016

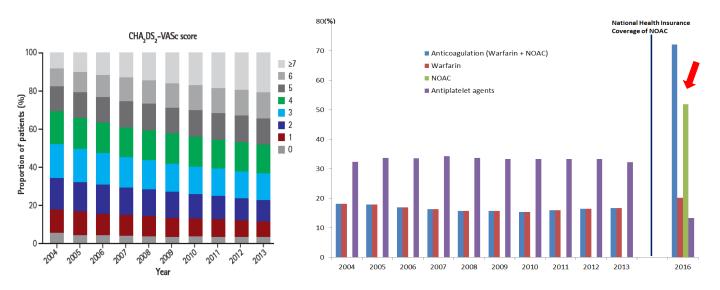


Old Age and Renal function: Laboratory monitoring of NOAC

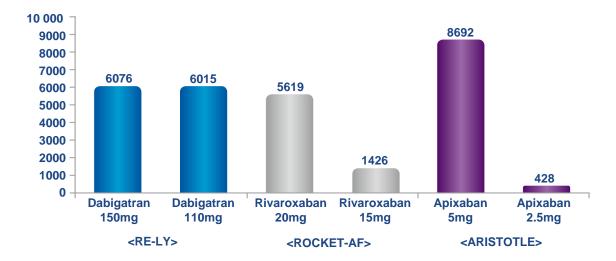
Figure 2. Challenge in Defining a Therapeutic Range for Individual Non–Vitamin K Antagonist Oral Anticoagulants

The association between drug dose and plasma level is confounded by clinical characteristics, especially age and renal function.

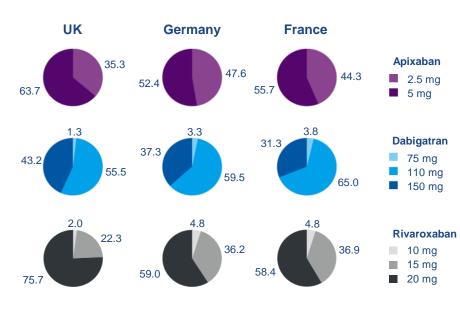
JAMA Cardiology 2017

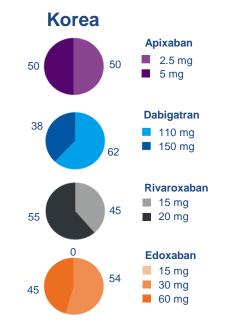


Optimal NOAC dosage in Asian AF patients


CHA₂DS₂-VASc score and Anticoagulation Rate: The impact of the insurance of NOAC

Lee H, Kim TH, et al. Korean Circ J 2017;47:56-64, Kim TH, unpublished


Discrepancy between trials and clinical practice : Randomized controlled trials



Connolly et al. N Engl J Med 2009;361:1139-51, Patel et al. N Engl J Med 2011;365:883-91, Granger et al. N Engl J Med 2011;365:981-92

Reduced dose NOAC usage in clinical practice

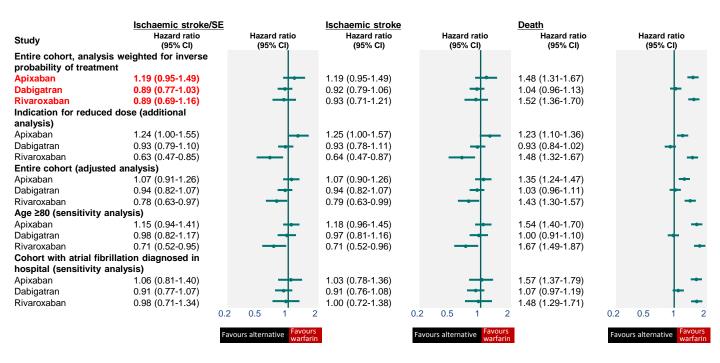
Source:UBIST(Jan-Dec 2016)

Fay et al. ESC Poster P2597; Aug 2016

Effectiveness and safety of NOAC and warfarin in patients with AF: Danish cohort study

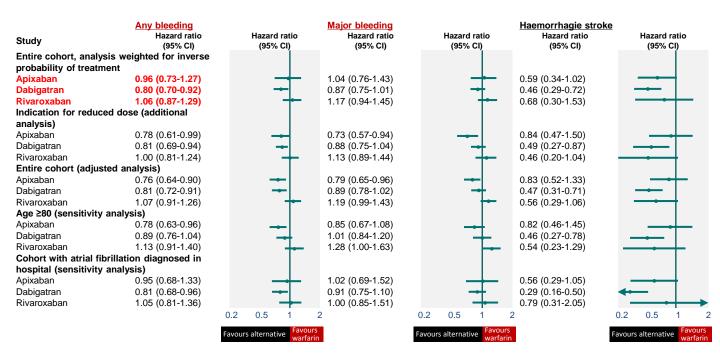
	c stroke or	
systemi	c embolism	

	Hazard ratio (95% CI)	
Cohort with atrial fibri	illation (main analysi	s)
Apixaban	1.08 (0.91 to 1.27)	-
Dabigatran	1.17 (0.89 to 1.54)	-
Rivaroxaban	0.83 (0.69 to 0.99)	-
Cohort with hospital d fibrillation (sensitivity	liagnosed atrial y analysis)	
Apixaban	1.03 (0.86 to 1.25)	-
Dabigatran	1.00 (0.72 to 1.38)	_
Rivaroxaban	0.86 (0.70 to 1.07)	-+
Age <65 years (supple	mentary analysis)	
Apixaban	1.06 (0.70 to 1.61)	-
Dabigatran	1.00 (0.78 to 1.29)	-
Rivaroxaban	0.79 (0.53 to 1.19)	
Age ≥65 years (supple	ementary analysis)	
Apixaban	1.08 (0.91 to 1.29)	-
Dabigatran	1.20 (0.87 to 1.67)	-
Rivaroxaban	0.82 (0.67 to 1.00)	-+-
Primary stroke protect (supplementary analy		
Apixaban	1.03 (0.77 to 1.37)	-
Dabigatran	1.24 (0.72 to 2.11)	-
Rivaroxaban	0.85 (0.65 to 1.11)	-
Secondary stroke prot (supplementary analy		
Apixaban	1.07 (0.88 to 1.29)	-
Dabigatran	1.01 (0.80 to 1.27)	-
Rivaroxaban	0.80 (0.63 to 1.00)	
	0	.2 0.5 1
	Favou	irs native

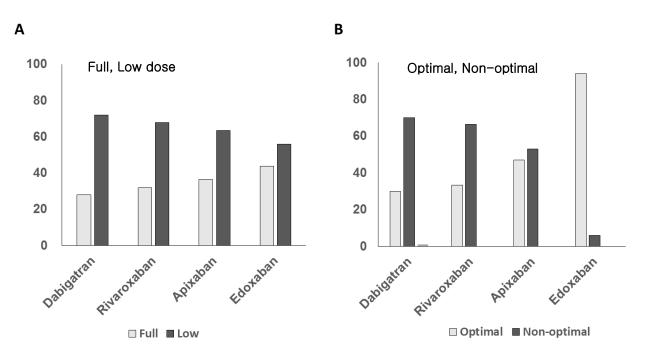

	Any bleeding		Major bleeding		
	Hazard ratio (95% CI)		Hazard ratio (95% CI)		
Cohort with atrial fibrillation	on (main analysis)				
Apixaban	0.63 (0.53 to 0.76)		0.61 (0.49 to 0.75) —	
Dabigatran	0.61 (0.51 to 0.74)		0.58 (0.47 to 0.71)	
Rivaroxaban	0.99 (0.86 to 1.14)	+	1.06 (0.91 to 1.23) +-	
Cohort with hospital diagn fibrillation (sensitivity ana	osed atrial Ilysis)				
Apixaban	0.68 (0.55 to 0.83)		0.64 (0.51 to 0.81)	
Dabigatran	0.61 (0.49 to 0.76)		0.62 (0.48 to 0.79) —	
Rivaroxaban	1.01 (0.86 to 1.19)	+	1.07 (0.89 to 1.29)	
Age <65 years (supplement	tary analysis)				
Apixaban	0.41 (0.24 to 0.72)	I	0.37 (0.20 to 0.69) [
Dabigatran	0.61 (0.46 to 0.81)		0.50 (0.37 to 0.68) (
Rivaroxaban	0.69 (0.44 to 1.08)		0.64 (0.39 to 1.07)	
Age ≥65 years (supplemen	tary analysis)				
Apixaban	0.68 (0.56 to 0.82)		0.66 (0.53 to 0.82)	
Dabigatran	0.60 (0.48 to 0.75)		0.57 (0.45 to 0.72)	
Rivaroxaban	1.04 (0.90 to 1.20)	+	1.14 (0.97 to 1.34) -	
Primary stroke protection (supplementary analysis)					
Apixaban	0.60 (0.49 to 0.74)		0.57 (0.45 to 0.72)	
Dabigatran	0.65 (0.52 to 0.81)		0.60 (0.48 to 0.76)	
Rivaroxaban	1.03 (0.89 to 1.21)	+	1.10 (0.93 to 1.31) -	
Secondary stroke protection (supplementary analysis)	on				
Apixaban	0.75 (0.54 to 1.03)		0.77 (0.53 to 1.13)	
Dabigatran	0.63 (0.34 to 1.19)		0.50 (0.33 to 0.75) — (
Rivaroxaban	0.88 (0.64 to 1.20)	-+-	0.95 (0.66 to 1.36		
	0	.2 0.5 1	2	0.2 0.5 1	2
			vours rfarin	Favours Favo alternative warf	

Larsen et al. BMJ 2016;353:i3189

Favours

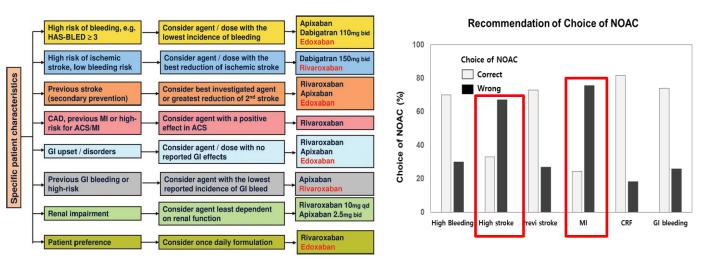

Effectiveness and safety of reduced dose NOAC and warfarin in patients with AF: Danish cohort study

Nielsen et al. BMJ 2017;356:j510


Effectiveness and safety of reduced dose NOAC and warfarin in patients with AF: Danish cohort study

Nielsen et al. BMJ 2017;356:j510

Choice of NOAC for Korean patients with nonvalvular AF: analysis of a multicenter registry (COmparision study of Drugs for symptom control and complication prEvention of Atrial Fibrillation; CODE-AF registry)


CODE-AF investigators, Sung M, et al. (Unpublished)

The Choice of NOAC

Choice of NOAC for Korean patients with nonvalvular AF: analysis of a multicenter registry (COmparision study of Drugs for symptom control and complication prEvention of Atrial Fibrillation; CODE-AF registry)

Okumura K, et al. Clin Cardiol 2017

CODE-AF investigators, Sung M, et al. (Unpublished)

Clinical outcome according to NOAC: Yonsei

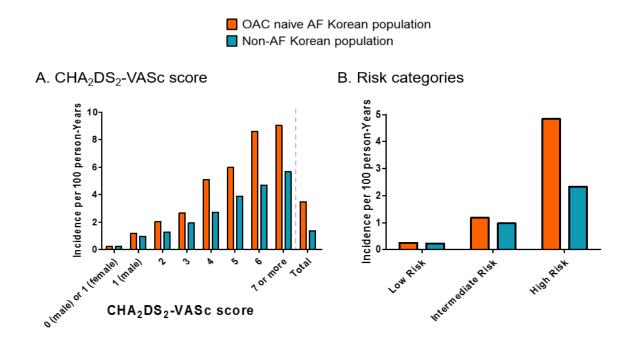
Total (n=5702)	Warfarin (n =4990)	NOAC (n = 5702)	p-value	Dabigatran	Apixaban	Ribaroxaban
MACE, n (%)	63 (1.3)	29 (0.5)	<0.001	7 (0.4)	14 (0.7)	8 (0.5)
%/year	0.96	0.53	0.001	0.38	0.77	0.50
Stroke, n (%)	52 (1.0)	19 (0.3)	<0.001	5 (0.3)	8 (0.4)	6 (0.4)
%/year	0.79	0.35	<0.001	0.27	0.44	0.38
Systemic embolism	9 (0.2)	2 (0.04)	0.042	0 (0)	1 (0.1)	1 (0.1)
%/year	0.14	0.04	0.051	0	0.05	0.06
Major bleeding	96 (1.9)	41 (0.7)	<0.001	10 (0.6)	11 (0.6)	19 (1.2)
%/year	1.47	0.75	<0.001	0.54	0.60	1.20
GI system	50 (1.0)	25 (0.4)	0.001	5 (0.3)	9 (0.5)	10 (0.6)
%/year	0.77	0.46	0.013	0.27	0.49	0.63
CNS system	33 (0.7)	12 (0.2)	0.001	4 (0.2)	1 (0.1)	7 (0.4)
%/year	0.51	0.22	0.004	0.22	0.05	0.44
Follow up	362	286	-0.001	298	305	314
(median, day)	(100, 752)	(105, 550)	<0.001	(106, 580)	(107, 560)	(102, 570)

Kim K, et al. unpublished

SEVERANCE CARDIOVASCULAR HOSPITAL

Conclusion

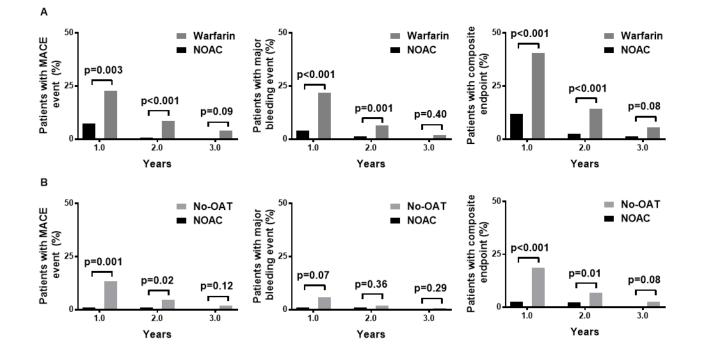
- NOAC은 RCT 결과 아시아인에서 효과적이다.
- 아시아 국가간 뇌졸중률의 차이가 존재할 수 있다.
- 아시아인에서 적절한 NOAC 용량에 대한 추가 자료가 필요하다.
- Real world data에서 NOAC의 효과에 대한 추가 자료가 필요하다.



경청해주셔서 감사합니다!

Incidence rates of ischemic stroke/systemic embolism according to each CHA₂DS₂-VASc scores (A) and risk categories as stratified by low (score 0 or 1 in female), intermediate (1 in male), and high risk (≥2) (B).

Kim TH, Yang PS, Joung B, Lip G et al. Stroke 2017 (In press)


Clinical outcome according to NOAC: Yonsei

Total	Dabigatran	Apixaban	Ribaroxaban	Edoxaban	p-value
(n=5702)	(n=1,772)	(n=1,964)	(n=1,599)	(n=367)	
MACE, n (%)	7 (0.4)	14 (0.7)	8 (0.5)	0 (0)	0.267
%/year	0.38	0.77	0.50	0	0.309
Stroke, n (%)	5 (0.3)	8 (0.4)	6 (0.4)	0 (0)	0.620
%/year	0.27	0.44	0.38	0	0.677
Systemic embolism	0 (0)	1 (0.1)	1 (0.1)	0 (0)	0.745
%/year	0	0.05	0.06	0	0.771
Major bleeding	10 (0.6)	11 (0.6)	19 (1.2)	1 (0.3)	0.064
%/year	0.54	0.60	1.20	0.50	0.103
Gastrointestinal system	5 (0.3)	9 (0.5)	10 (0.6)	1 (0.3)	0.472
%/year	0.27	0.49	0.63	0.50	0.484
Central nervous system	4 (0.2)	1 (0.1)	7 (0.4)	0 (0)	0.069
%/year	0.22	0.05	0.44	0	0.081
Follow up (median, day)	298 (106, 580)	305 (107, 560)	314 (102, 570)	193 (90, 290)	<0.001

Kim K, et al. unpublished

World-Wide AF Cohorts and RCTs, by Region, Publication Year,

Number of Subjects off Anticoagulation, and Annual Stroke Rate

Study Name	Midpoint Year	Subjects	Annual Stroke Rate (95% CI)
TOTAL NORTH AMERICAN COHORTS		46,574	1.30 (1.24 – 1.26)
TOTAL EUROPEAN COHORTS		254,576	4.14 (4.07 – 4.21)
TOTAL ASIAN COHORTS		204,469	3.64 (3.60 – 3.69)
TOTAL MIDDLE EASTERN COHORTS		38,234	3.00 (2.83 – 3.19)
TOTAL PROSPECTIVE COHORTS		50,391	1.22 (1.17 – 1.28)
TOTAL RETROSPECTIVE COHORTS		493,462	3.80 (3.76 – 3.83)
TOTAL RANDOMIZED CONTROLLED TRIALS		7,578	3.45 (3.14 – 3.79)

Quinn et al. Circulation 2017