Weigh the benefit of statin treatment: LDL & Beyond

Duk-Woo Park, MD, PhD Heart Institute, University of Ulsan College of Medicine, Asan Medical, Seoul, Korea

FOURIER

<u>Further cardiovascular OU</u>tcomes <u>Research with PCSK9</u> Inhibition in subjects with <u>Elevated Risk</u>

MS Sabatine, RP Giugliano, AC Keech, N Honarpour, SM Wasserman, PS Sever, and TR Pedersen, for the FOURIER Steering Committee & Investigators

American College of Cardiology – 66th Annual Scientific Session Late-Breaking Clinical Trial March 17, 2017

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

Global Enrollment

27,564 patients randomized at 1242 sites in 49 countries between 2/2013 – 6/2015

27,564 high-risk, stable patients with established CV disease (prior MI, prior stroke, or symptomatic PAD)

- Efficacy
 - Primary: CV death, MI, stroke, hosp. for UA, or coronary revasc
 - Key secondary: CV death, MI or stroke
- Safety
 - AEs/SAEs
 - Events of interest incl. muscle-related, new-onset diabetes, neurocognitive
 - Development of anti-evolocumab Ab (binding and neutralizing)
- TIMI Clinical Events Committee (CEC)
 - Adjudicated all efficacy endpoints & new-onset diabetes
 - Members unaware of treatment assignment & lipid levels

Brigham and Women's Hospital and Harvard Medical School

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

BWH

Types of CV Outcomes

Endpoint	Evolocumab (N=13,784) 3-vr Kaplan	Placebo (N=13,780) -Meier rate	HR (95% CI)
CVD, MI, stroke, UA, or revasc	12.6	14.6	0.85 (0.79-0.92)
CV death, MI, or stroke	7.9	9.9	0.80 (0.73-0.88)
Cardiovascular death	2.5	2.4	1.05 (0.88-1.25)
МІ	4.4	6.3	0.73 (0.65-0.82)
Stroke	2.2	2.6	0.79 (0.66-0.95)
Hosp for unstable angina	2.2	2.3	0.99 (0.82-1.18)
Coronary revasc	7.0	9.2	0.78 (0.71-0.86)
Urgent	3.7	5.4	0.73 (0.64-0.83)
Elective	3.9	4.6	0.83 (0.73-0.95)
Death from any cause	4.8	4.3	1.04 (0.91-1.19)

Achieved LDL Cholesterol (mg/dl)

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

CTTC data from Lancet 2010;376:1670-81

Comparison to Cholesterol Treatment Trialists Collaboration

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

CTTC data from Lancet 2010;376:1670-81

BWH

	Evolocumab (N=13,769)	Placebo (N=13,756)
Adverse events (%)		
Any	77.4	77.4
Serious	24.8	24.7
Allergic reaction	3.1	2.9
Injection-site reaction	2.1	1.6
Treatment-related and led to d/c of study drug	1.6	1.5
Muscle-related	5.0	4.8
Cataract	1.7	1.8
Diabetes (new-onset)	8.1	7.7
Neurocognitive	1.6	1.5
Laboratory results (%)		
Binding Ab	0.3	n/a
Neutralizing Ab	none	n/a

New-onset diabetes assessed in patients without diabetes at baseline; adjudicated by CEC

• \downarrow LDL-C by 59%

- Consistent throughout duration of trial
- Median achieved LDL-C of 30 mg/dl (IQR 19-46 mg/dl)

• \downarrow CV outcomes in patients already on statin therapy

- 15% \downarrow broad primary endpoint; 20% \downarrow CV death, MI, or stroke
- Consistent benefit, incl. in those on high-intensity statin, low LDL-C
- 25% reduction in CV death, MI, or stroke after 1st year
- Long-term benefits consistent w/ statins per mmol/L \downarrow LDL-C

Safe and well-tolerated

- Similar rates of AEs, incl DM & neurocog events w/ EvoMab & pbo
- Rates of EvoMab discontinuation low and no greater than pbo
- No neutralizing antibodies developed

LDL-C Reduction with Statins and CV Event Reduction

Collins R et al, Lancet epub Sept 9, 2016

Effect of LDL-C Lowering With Statins on Cause-Specific Mortality

Collins R et al, Lancet epub Sept 9, 2016

Reduction in CV Events Per Year of Statin Treatment

Collins R et al, Lancet epub Sept 9, 2016

Effect of LDL-C Lowering With Statins on Cancer Incidence

	Total number of cancers	Annual cancer rate in control arm (% per year)		RR (CI) per 1 mmol/L reduction in LDL cholesterol				
Large bowel or intestine	1116	0.2		0.95 (0.82–1.11)				
Other GI	1343	0.2		0.99 (0.86–1.15)				
Prostate	1877	0.4	— —	0.97 (0.85–1.10)				
Bladder	646	0.1	e	0.94 (0.76–1.16)				
Other GU	797	0.1	_	1.05 (0.86–1.27)				
Respiratory	1692	0.2	+	1.00 (0.88–1.14)				
Female breast	517	0.3	-	1.09 (0.85–1.39)				
Haematological	614	0.1	_	1.03 (0.83–1.28)				
Other/unspecified	1829	0.2		1.05 (0.92–1.21)				
Any cancer	10431	1.5	\diamond	1.00 (0.96–1.04)				
- 99% Cl 🔶 9)5% CI	0.5 0	·75 1 1·25 1·5					
LDL cholesterol LDWering better								

Collins R et al, Lancet epub Sept 9, 2016

West of Scotland Study: 20-Year Follow-Up Mortality: (A) All Cause, (B) CV, (C) CHD, and (D) Non-CVD

Ford I et al, *Circulation* 2016;133:1073-80

West of Scotland Study: 20-Year Follow-Up

Cumulative hospitalizations for (A) CV disease, (B) MI, (C) heart failure, and (D) coronary revascularization

Ford I et al, Circulation 2016;133:1073-80

CV Event Reduction with Statins...

- is proportional to LDL-C reduction
- applies to a broad population
- is independent of baseline LDL-C
- is independent of baseline risk

LDL-C Lowering Drugs And CV Event Reduction

•Silverman MG et al, JAMA 2016;316:1289-97

2016 European Guidelines

- Non-fasting blood samples allowed for screening
- "lowering LDL-C beyond the goals that were set in the previous EAS/ESC guidelines is associated with fewer CV events.
 Therefore, it seems appropriate to reduce LDL-C as low as possible, at least in patients at very high CV risk"
- LDL-C targets include 50% reduction; so, for an untreated v ery high-risk patient with LDL-C 1.8-3.5 mmol/L, or an untrea ted high-risk patient with LDL-C 2.6-5.2 mmol/L, the new go al is a 50% LDL-C reduction
- Consider adding ezetimibe if target is not reached with hig hest tolerated statin dose (2b→2a evidence)
- Consider adding a PCSK9 inhibitor for patients at very high r isk with persistently high LDL-C despite therapy

Eur Heart J 2016, published on-line August 27, 2016

2014 ACC/AHA guidelines

Clinical CVD

CHD, stroke, and peripheral arterial disease, all of presumed atherosclerotic origin

LDL-C ≥190 mg/dL (~5 mmol/L)

High-intensity statin*

Moderate- or high-intensity statin[†]

High-intensity

statin*

Diabetes mellitus

+ age 40–75 years + LDL-C 70–189 mg/dL (1.8–4.9 mmol/L)

CVD risk ≥7.5%

No diabetes + age 40–75 years + LDL-C 70–189 mg/dL (1.8–4.9 mmol/L) Moderate- or high-intensity statin[‡]

Intensity of Statin Therapy

High	Moderate	Low
LDL-C ≥50%	LDL-C 30 to <50%	LDL-C <30%
Atorva 40-80 mg Rosuva 20-40 mg	Atorva 10 mg Rosuva 10 mg Simva 20-40 mg Pravas 40 mg Lova 40 mg Fluva XL 80 mg Fluva 40 mg bid Pitava 2-4 mg	Simva 10 mg Prava 10-20 mg Lova 20 mg Fluva 20-40 mg Pitava 1 mg

Statins in bold were evaluated in randomized controlled trials; those in italics were not

2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults, p 34

Statin Therapy and Incident Diabetes

		Sta	tin	Plac or Co	ebo ntrol		
	n	Events	Rate	Events	Rate	OR (95% CI)	Weight (%)
ASCOT-LLA	7773	154	11.9	134	10.5	1.14 (0.89-1.46)	7.07%
HPS	14,573	335	9.2	293	8.0	1.15 (0.98-1.35)	13.91%
JUPITER	17,802	270	16.0	216	12.8	1.26 (1.04-1.51)	11.32%
WOSCOPS	5974	75	5.2	93	6.5	0.79 (0.58-1.10)	4.24%
LIPID	6997	126	6.0	138	6.6	0.91 (0.71-1.71)	6.53%
CORONA	3534	100	20.9	88	18.5	1.14 (0.84-1.55)	4.65%
PROSPER	5023	165	20.5	127	15.8	1.32 (1.03-1.69)	6.94%
MEGA	6086	172	10.8	164	10.1	1.07 (0.86-1.35)	8.03%
AFCAPS/TEXCAP	S 6211	72	4.5	74	4.6	0.98 (0.70-1.38)	3.76%
4S	4242	198	17.3	193	16.8	1.03 (0.84-1.28)	8.88%
ALLHAT	6087	238	16.4	212	14.4	1.15 (0.95-1.41)	10.23%
GISSI HF	3378	225	34.8	215	32.1	1.10 (0.89-1.35)	9.50%
GISSI PREV	3460	96	27.5	105	30.6	0.89 (0.67-1.20)	4.94%
Overall (l ² = 11.2)	% [95% C	1 0.0-50.	2%]			1.09 (1.02-1.17)	100%
					0.5	1.0 2.0	

Incident Diabetes in the SPARCL Trial According to Baseline Clinical Predictors

Waters DD et al. JACC 2011;57:1535-45

Side effects vs CVD Risk Reduction by Statin Tx

10,000 patients treated by

Atorvastatin 40mg for 5 years

LDL-C 77mg/dL ↓ then, 10% for secondary prevention ↓ 5% for primary prevention ↓ of vascular disease

0.05% case of Myopathy 1~0.5% Case of DM onset 0.1~0.05% Case of Hemorrhagic stroke

"Concern that exaggerated claims about side-effect rates with statin therapy may be responsible for its under-use among individuals at increased risk of cardiovascular events."

Collins R et al, *Lancet* 2016, epub Sept 8

Atorvastatin: Clinical Trials

Successful Trials

AVERT - ACS MIRACL - ACS CARDS - diabetes ASCOT-LLA - hypertension PROVE-IT - ACS GREACE - CAD* ALLIANCE - managed care TNT - stable CAD SPARCL - stroke/TIA

Unsuccessful Trials

ASPEN – diabetes*

4D – diabetes + dialysis

IDEAL – post-MI**

LEADe – Alzheimer's dementia

* Poor trial design** Mainly positive endpoints

Safety of Atorvastatin 80 mg in Clinical Trials

	Follow-up	Patients	↑ALT/AST >3x ULN*	↑CK >10x ULN*
Newman et al+	variable	4,798	26 (0.6%)	2 (0.06%)
PROVE-IT	2 years	2,099	69 (3.3%)	NA
TNT	4.9 years	4,995	60 (1.2%)	0
IDEAL	4.8 years	4,439	61 (1.38%)	0
SPARCL	4.9 years	2,365	51 (2.2%)	2 (0.08%)
Total	variable	18,696	267 (1.43%)	4 (0.021%)

How Safe Is Atorvastatin in Asians?

- 67,637 patients in 55 atorvastatin trials included only 2,4 45 Asians
- No increased incidence of adverse events in Asians
- No case of rhabdomyolysis observed in atorvastatin-treat ed Asian patients
- Myalgias were reported by 2.3% of Asians (57 of 2,445) and 5.0% of non-Asians (2,235 of 44,793)
- The incidence of elevated hepatic enzymes was similar i n Asians and non-Asians
- CAVEAT: only 106 Asian patients took the 80 mg dose
- CONCLUSION: safety profile of atorvastatin 10–80 mg is similar in Asians and non-Asians.

Chen J et al, from the 23rd Great Wall International Congress of Cardiology & the Asia Paci fic Heart Congress, October, 2012; Beijing, China

Conclusions

- Newer guidelines (ESC, ACC/AHA and NICE) recommend that statins should be offered to a wider range of patients at risk
- High-intensity statin treatment is recommended for most patients and moderate-intensity for the rest
- Use statins to treat risk, not cholesterol
- Benefit outweights over the harm
- Atorvastatin reduced CV events in 9 trials covering a broad spectrum of patients, and is safe at the 80 mg dose (albeit with limited data in Asians)