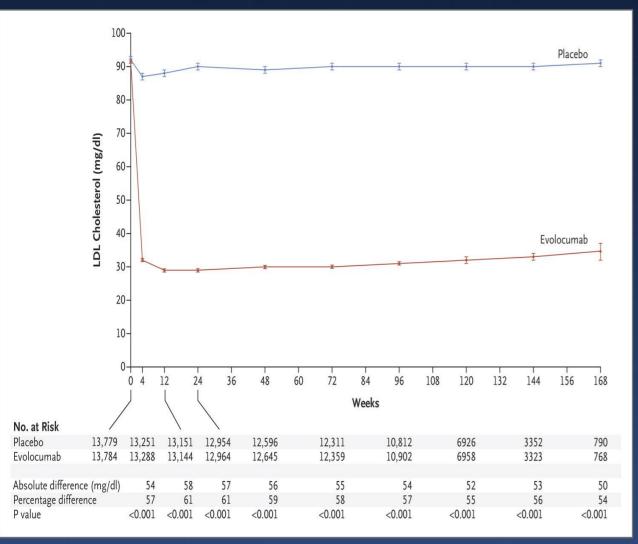
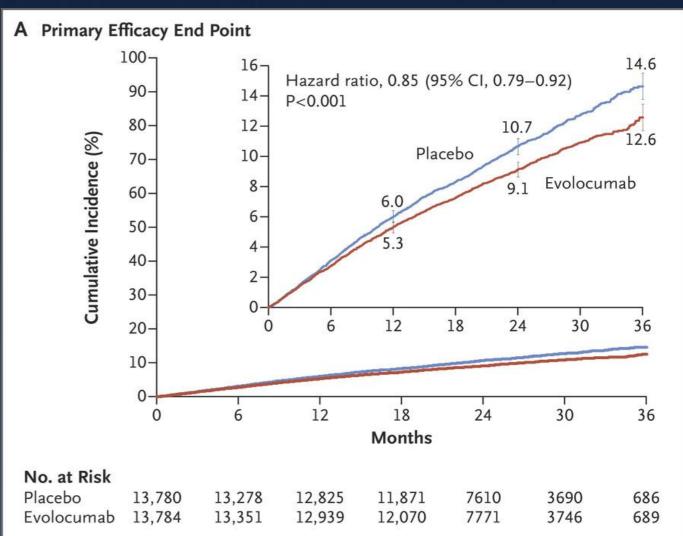
# Applying ACC/AHA guideline to Korean patients


Kiyuk Chang MD

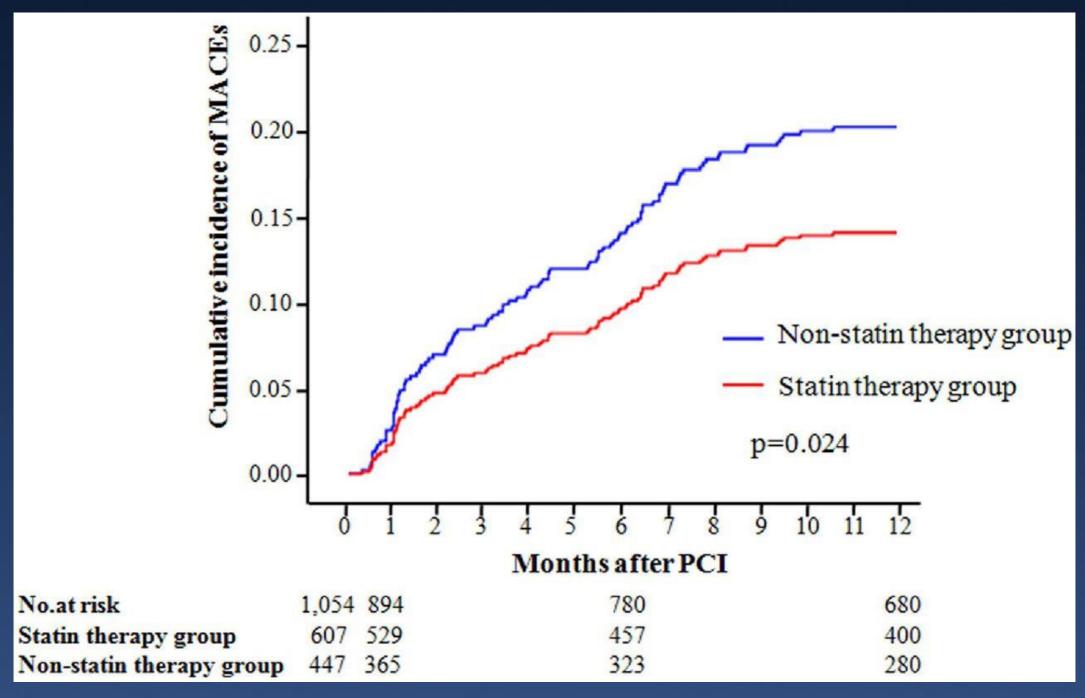

Cardiology
Seoul St. Mary's Hospital
The Catholic University of Korea

## Evolocumab & Clinical outcome (FOURIER)

#### Inclusion criteria

- ASCVD: prior MI, stroke, PAD
- LDL > 70 mg/dL despite atorvastatin 20 mg higher±ezetimibe






Sabatine MS et al, N Engl J Med 2017 Mar





## Benefit of early statin therapy in patients wth AMI & LDL < 70 mg/dL

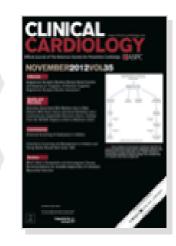


Lee KH et al, J Am Coll Cardiol 2011;58:1664-71





## MUSTANG


## **CLINICAL CARDIOLOGY**

Explore this journal >

**Clinical Investigation** 

### Current Statin Usage for Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention: Multicenter Survey in Korea

Mi-Jeong Kim MD, Doo Soo Jeon MD, Hyeon-Cheol Gwon MD, Soo-Joong Kim MD, Kiyuk Chang MD, Hyo-Soo Kim MD, Seung-Jea Tahk MD ⊠, for Korean MUSTANG Investigators



View issue TOC Volume 35, Issue 11 November 2012 Pages 700-706

Kim MJ et al, Clin Cardiol 2012;35:700-6



## MUSTANG

#### OBJECTIVES

 Examination of statin treatment patterns in acute coronary syndrome(ACS) undergoing percutaneous coronary intervention(PCI)

#### POPULATION and DATA COLLECTION

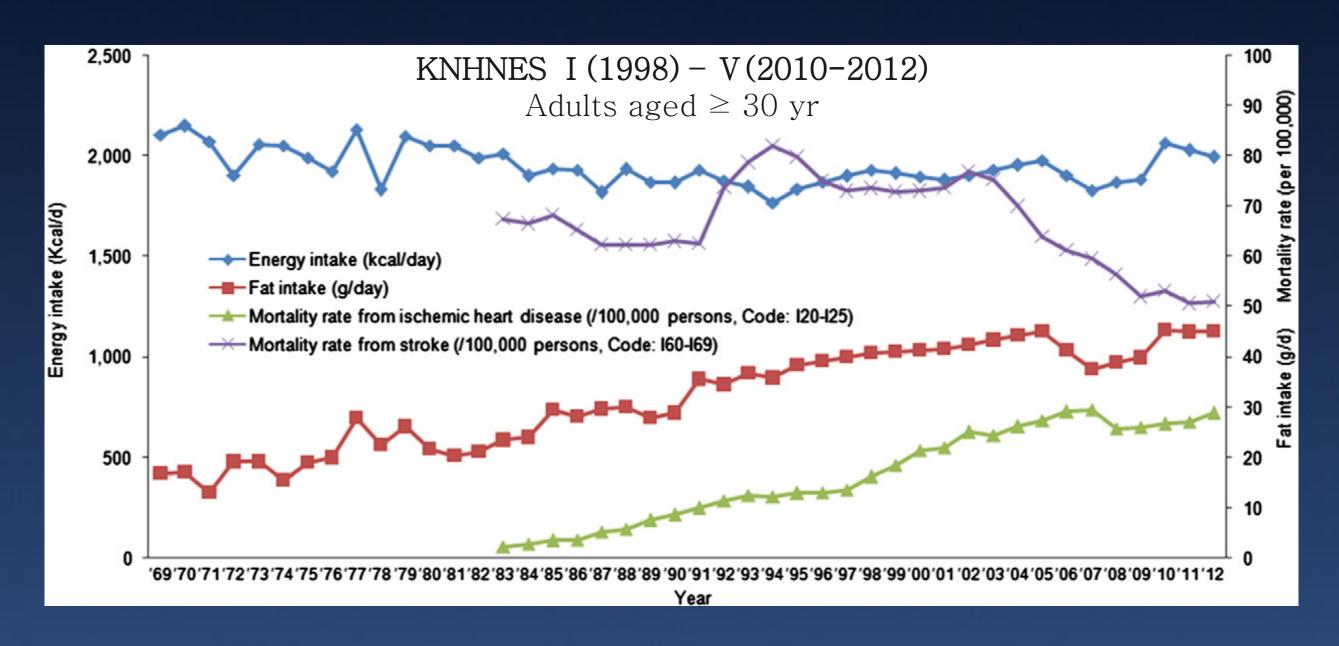
- √ 3362 patients registered and followed for 30 days after enrollment from 48 hospitals
- diagnosed with unstable angina,(UA) non-STelevated MI(NSTEMI), or ST-elevated MI(STEMI)
- ✓ High dose: atorvastatin ≥40 mg or rosuvastatin ≥20 mg per day

Kim MJ et al, Clin Cardiol 2012;35:700-6



#### Contents

- 1. CVD Risk and Lipid in Asia Population
- 2. Comparison of Statin Eligibility between ATP III Guideline vs ACC/AHA Guideline
- 3. Introduction of Korean Risk Prediction Model
- 4. Effect of High intensity statin therapy in ASCVD




### Contents

- 1. CVD Risk and Lipid in Asia Population
- 2. Comparison of Statin Eligibility between ATP III Guideline vs ACC/AHA Guideline
- 3. Introduction of Korean Risk Prediction Model
- 4. Effect of High intensity statin therapy in ASCVD



### Trends in mortality rate from CHD and stroke in Korea



KNHNES, Korea National Health and Nutrition Examination Survey

Kim HJ, et al. Intern J Cardiol 2014;174:64-72.

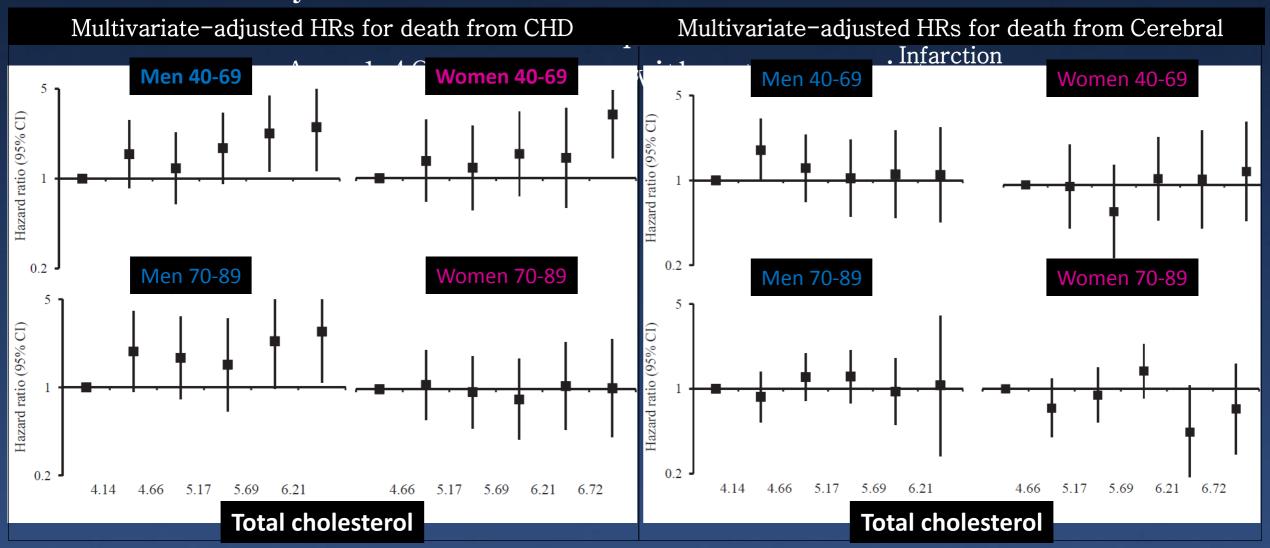




### Lipid profile of general Korean population

|                                                           | KNHANES         |                 |                 | P for trend <sup>a</sup> |
|-----------------------------------------------------------|-----------------|-----------------|-----------------|--------------------------|
|                                                           | III             | IV              | V               |                          |
|                                                           | (2005)          | (2007–09)       | (2010–12)       |                          |
| Men (no. of $\geq$ 30 yr)                                 | 1976            | 5878            | 6273            |                          |
| Total cholesterol (mg/dL, mean $\pm$ SE)                  | $186.6 \pm 0.9$ | $189.3 \pm 0.5$ | $191.2 \pm 0.6$ | <0.0001                  |
| Total cholesterol (mg/dL, age-standardized mean $\pm$ SE) | $186.4 \pm 0.9$ | $189.2 \pm 0.5$ | $191.0 \pm 0.6$ | < 0.0001                 |
| Hypercholesterolemia (%, SE) <sup>b</sup>                 |                 |                 |                 |                          |
| Total (≥30 yr)                                            | 7.3 (0.6)       | 10.1 (0.5)      | 12.9 (0.5)      | < 0.0001                 |
| Total (≥30 yr, age-standardized)                          | 7.2 (0.6)       | 10.0 (0.5)      | 12.6 (0.5)      | < 0.0001                 |
| 30–39 yr                                                  | 5.9 (1.1)       | 7.9 (0.8)       | 10.2 (1.0)      | 0.0063                   |
| 40–49 yr                                                  | 8.7 (1.3)       | 10.8 (0.9)      | 10.9 (0.9)      | 0.1851                   |
| 50–59 yr                                                  | 7.9 (1.5)       | 12.2 (1.1)      | 16.9 (1.2)      | < 0.0001                 |
| 60–69 yr                                                  | 8.8 (1.7)       | 11.3 (1.2)      | 15.6 (1.3)      | 0.0027                   |
| ≥70 yr                                                    | 3.6 (1.3)       | 8.1 (1.1)       | 13.0 (1.3)      | < 0.0001                 |
| <i>P</i> -value <sup>c</sup>                              | 0.0934          | 0.0046          | < 0.0001        |                          |
| Women (no. of $\geq$ 30 yr)                               | 2651            | 7992            | 8384            |                          |
| Total cholesterol (mg/dL, mean $\pm$ SE)                  | $187.6 \pm 0.8$ | $190.6 \pm 0.5$ | $192.9 \pm 0.5$ | < 0.0001                 |
| Total cholesterol (mg/dL, age-standardized mean $\pm$ SE) | $187.1 \pm 0.7$ | $189.4 \pm 0.5$ | $191.4 \pm 0.5$ | < 0.0001                 |
| Hypercholesterolemia (%, SE)                              |                 |                 |                 |                          |
| Total (≥30 yr)                                            | 8.7 (0.7)       | 12.6 (0.4)      | 16.4 (0.5)      | < 0.0001                 |
| Total (≥30 yr, age-standardized)                          | 8.4 (0.6)       | 11.8 (0.4)      | 14.9 (0.5)      | < 0.0001                 |
| 30–39 yr                                                  | 1.8 (0.5)       | 4.1 (0.5)       | 4.6 (0.6)       | 0.0017                   |
| 40–49 yr                                                  | 5.5 (1.0)       | 6.8 (0.6)       | 8.8 (0.9)       | 0.0226                   |
| 50–59 yr                                                  | 15.2 (1.9)      | 20.0 (1.2)      | 24.5 (1.2)      | 0.0001                   |
| 60–69 yr                                                  | 17.4 (2.1)      | 24.2 (1.3)      | 32.2 (1.5)      | < 0.0001                 |
| ≥70 yr                                                    | 13.2 (2.4)      | 19.2 (1.4)      | 24.5 (1.4)      | 0.0002                   |
| P-value <sup>c</sup>                                      | < 0.0001        | < 0.0001        | < 0.0001        |                          |






### Relation Between Serum TC Level and CVD in Japan

#### EPOCH-JAPAN study

(Evidence for Cardiovascular Prevention from Observational Cohorts in Japan)

A Pooled Analysis of 65 594 Individuals From 10 Cohort Studies in



HRs, Hazard ratio was adjusted for cohort, age, systolic blood pressure, body mass index, and smoking and drinking categories.



### Difference in lipid among Asians and non-Asians

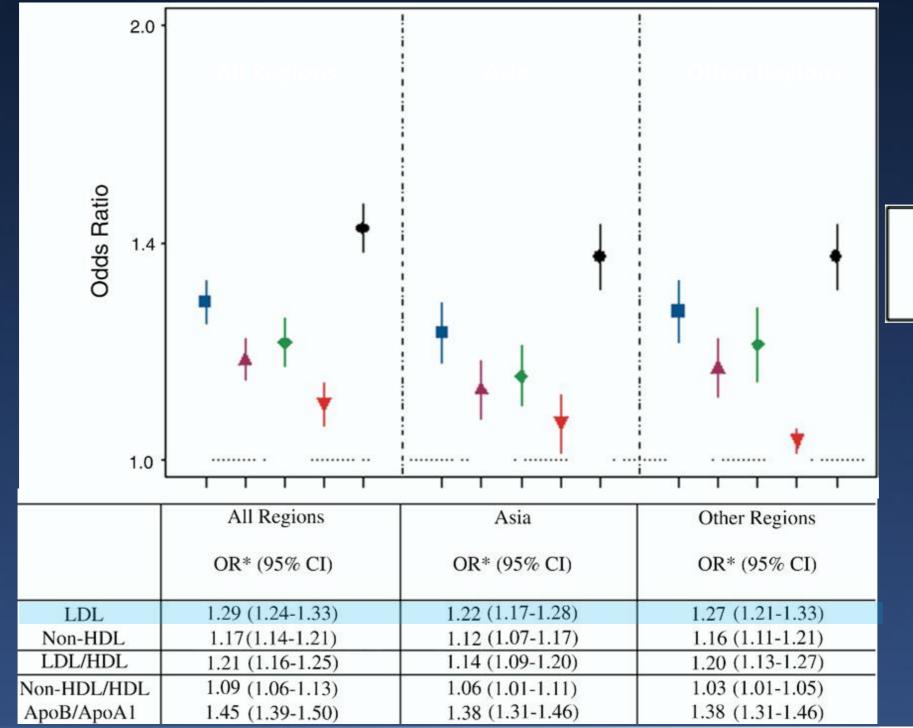
#### An Analysis From the INTERHEART Study

4,247 cases of a first AMI and 5,452 control subjects in Asia 4,455 cases of a first AMI and 5,867 control subjects in non-Asian

Mean LDL-C, HDL-C in Subjects From Asia and Other Regions

|                                   | LDL-C*<br>(mg/dl)<br>Cases Controls |              | HDL-C*<br>(mg/dl) |             |  |
|-----------------------------------|-------------------------------------|--------------|-------------------|-------------|--|
|                                   |                                     |              | Cases             | Controls    |  |
| Asia (n = 9,699)                  | 126.8 (40)                          | 118.6 (37)   | 39.2 (12.3)       | 41.2 (14.3) |  |
| Non-Asian regions (n = $10,322$ ) | 136.2 (42.4)                        | 127.1 (39.1) | 40.8 (13.2)       | 42.6 (15)   |  |
| South Asia (n = $2,674$ )         | 125.2 (39.8)                        | 115.4 (37.1) | 32.5 (10)         | 33.5 (11.6) |  |
| China/Hong Kong (n = $5,232$ )    | 121.6 (36)                          | 113.8 (33.8) | 41.9 (12)         | 44.0 (13.3) |  |
| Southeast Asia (n = 1,546)        | 150.4 (47.6)                        | 135.6 (41)   | 41.0 (12.5)       | 42.6 (15.5) |  |
| Japan (n = 247)                   | 133.6 (34.6)                        | 133.1 (30.9) | 44.2 (12.8)       | 56.4 (13.2) |  |

<sup>\*</sup>p<0.0001. †p=0.01, for both between-case and between-control comparisons between Asian and non-Asian regions.


A greater proportion of Asian cases and controls had LDL-C≤ 100 mg/dl (25.5% and 32.3% in Asians vs. 19.4% and 25.3% in non-Asians, respectively).





## Impact of lipid abnormality on CVD risk In an Asian population

Risk of First AMI for 1-SD Change in the Various Lipid





LDL

Non-HDL





### Contents

- 1. CVD Risk and Lipid in Asia Population
- 2. Comparison of Statin Eligibility between ATP III Guideline vs ACC/AHA Guideline
- 3. Introduction of Korean Risk Prediction Model
- 4. Effect of High intensity statin therapy in ASCVD

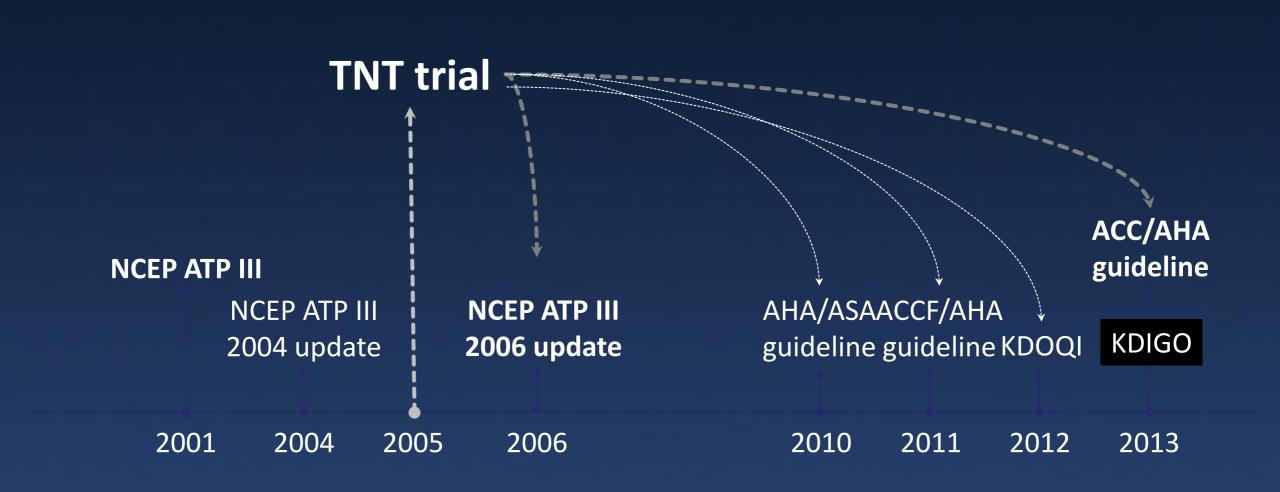


## More than 40% of major CHD events annually occur in persons with established CHD

The average annual age-standardized prevalence of CHD in the Perth metropolitan region (population 1.6 million) was 28 373 (8.8%) in men and 14 966 (4.0%) in women

Characteristics of Men and Women Ages 35 to 84 Years With and Without Coronary Heart Disease in Perth, Western Australia, Between 1995 and 2005

|                                                     | Established CHD |           | CHD         | ) Free    |  |
|-----------------------------------------------------|-----------------|-----------|-------------|-----------|--|
|                                                     | Men             | Women     | Men         | Women     |  |
| Average annual population, n                        | 28 373          | 14 966    | 313 999     | 324 409   |  |
| Average annual prevalence,*† %                      | 8.8             | 4.0       | 91.2        | 96.0      |  |
| Total nonfatal MI, CHD deaths, n (%)                | 8335 (43)       | 4117 (43) | 11 121 (57) | 5368 (57) |  |
| Total CHD deaths, n (%)                             | 4192 (55)       | 2276 (51) | 3470 (45)   | 2165 (49) |  |
| Total nonfatal MI, n (%)                            | 4143 (35)       | 1841 (36) | 7651 (65)   | 3203 (64) |  |
| Average annual crude rates per 100 000 person-years |                 |           |             |           |  |
| Total nonfatal MI+CHD deaths                        | 2686            | 2513      | 325         | 144       |  |
| CHD deaths                                          | 1361            | 1397      | 111         | 63        |  |
| Nonfatal MI                                         | 1325            | 1116      | 244         | 93        |  |

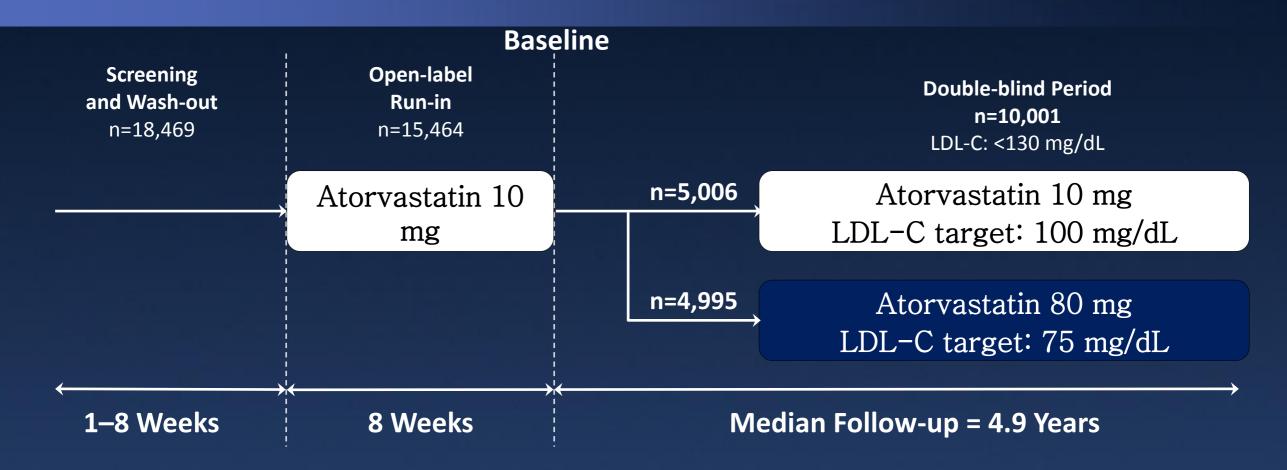

<sup>\*</sup>Average prevalence of previous admission for CHD in the past 15 years at June 30 in each calendar year 1995 to 2005.

†Age-standardized.





## Role of TNT Trial in Lipid Guideline Evolution




TNT was the First Randomized Clinical Trial to Prospectively Assess the Efficacy and Safety of Treating Patients with Stable CHD to LDL-C Levels Well Below 100 mg/dL





## TNT: Study Design



#### **Patient Population**

35-75 yrs with stable CHD

LDL-C: 130-250 mg/dL

Triglycerides ≤600 mg/dL

#### **Primary Efficacy Outcome**

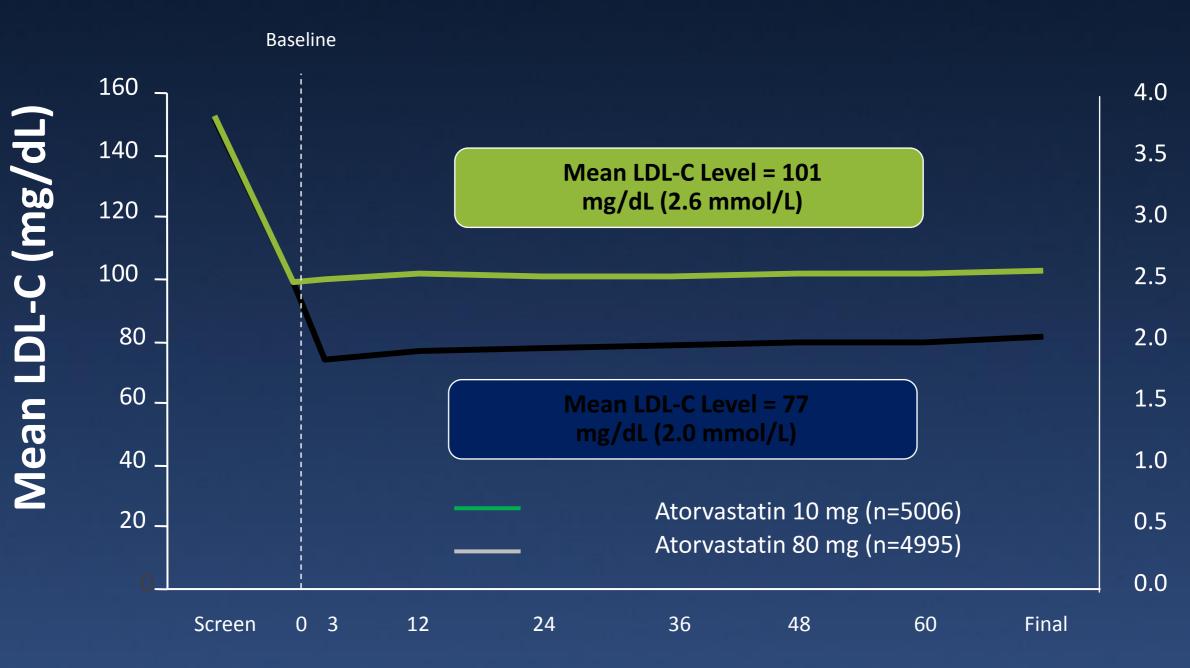
Time to occurrence of a major CV event:

CHD death

Nonfatal, non-procedure-related MI Resuscitated cardiac arrest Fatal or nonfatal stroke






## **TNT:** Baseline Patient Characteristics

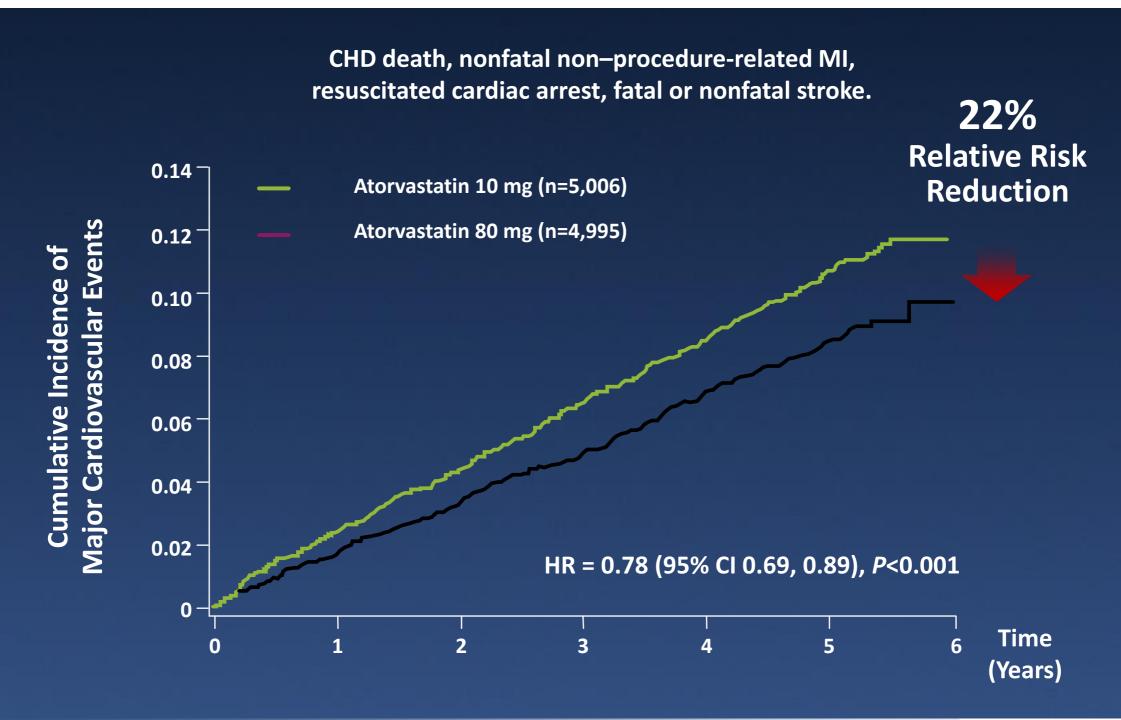
|                                                                                        | Atorvastatin 10 mg<br>(n=5,006) | Atorvastatin 80 mg<br>(n=4,995) |
|----------------------------------------------------------------------------------------|---------------------------------|---------------------------------|
| Age (mean ± SD)<br>Men<br>White                                                        | 61 ± 8.8 yrs<br>81%<br>94%      | 61 ± 8.8 yrs<br>81%<br>94%      |
| Cardiovascular Risk Factors (%)  • Current Smoker  • Hypertension  • Diabetes Mellitus | 13%<br>54%<br>15%               | 13%<br>54%<br>15%               |
| Cardiovascular History (%)                                                             | 81%<br>58%<br>54%<br>47%<br>5%  | 82%<br>59%<br>54%<br>47%<br>5%  |





## TNT: Changes in Lipid Levels








Mean LDL-C (mmol/L)

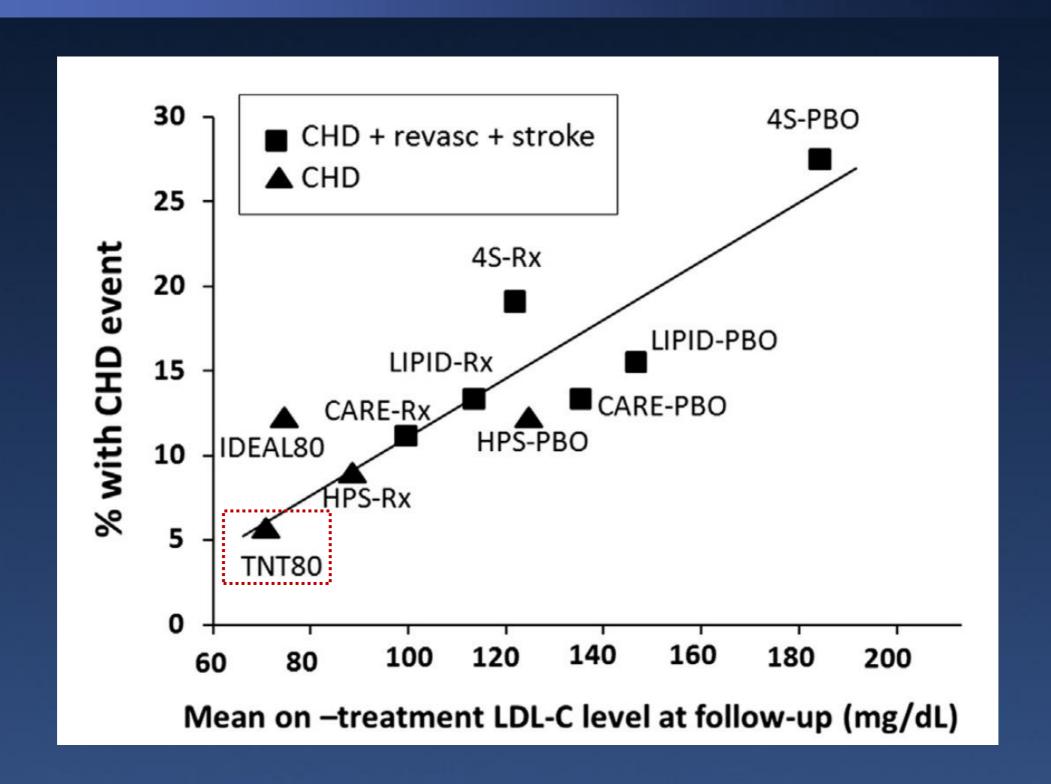
## **TNT: Primary Efficacy Outcome**

Kaplan-Meier Estimates of the Incidence of the Primary End Point








## **TNT: Safety Profile**

|                                                        | No. of Patients (%)             |                                 |  |  |
|--------------------------------------------------------|---------------------------------|---------------------------------|--|--|
|                                                        | Atorvastatin 10 mg<br>(n=5,006) | Atorvastatin 80 mg<br>(n=4,995) |  |  |
| Treatment discontinuation due to treatment-related AEs | 264 (5.3)                       | 359 (7.2)                       |  |  |
| Myalgia (treatment-related)                            | 234 (4.7)                       | 241 (4.8)                       |  |  |
| Rhabdomyolysis*                                        | 3 (0.06)                        | 2 (0.04)                        |  |  |
| AST/ALT elevation >3 x ULN <sup>†</sup>                | 9 (0.2)                         | 60 (1.2)                        |  |  |





## TNT: LDL < 100 mg/dL



## ATP III Guideline vs ACC/AHA Guideline

|                                                                            | ATP III Guideline      | ACC/AHA Guideline                                                                     |  |  |
|----------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------|--|--|
| Year                                                                       | 2001 (updated in 2005) | 2013                                                                                  |  |  |
| Focus                                                                      | Reducing CHD risk      | Reducing risk of <b>ASCVD*</b>                                                        |  |  |
| Risk Framingham 10 yr risk sco<br>assessmen e<br>(CHD death + non fatal Mi |                        | Pooled cohort equations <sup>†</sup> (fatal & nonfatal CHD + fatal & nonfatal stroke) |  |  |

\*ASCVD: ACS, a history of MI, stable or unstable angina, coronary or other arterial revascularization, stroke, TIA, or PAD presumed to be of atherosclerotic origin

†Developed by the Risk Assessment Work Group to estimate the 10-year ASCVD risk for the identification of candidates for statin therapy

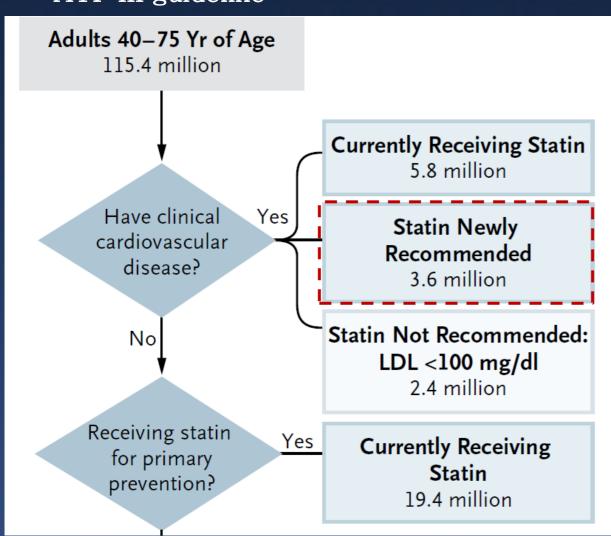


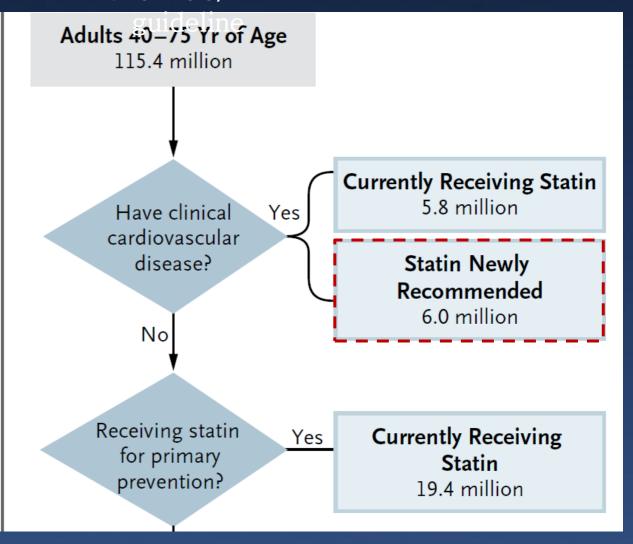


## ATP III Guideline vs ACC/AHA Guideline

|                     | ATP III Guideline                                                                                                                                                                        | ACC/AHA Guideline                                                                                                                                                                                           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Risk<br>Categories  | <ul> <li>3 main risk categories:</li> <li>• CHD / CHD risk equivalent*</li> <li>• 2+ risk factors &amp; 10-yr risk ≤ 20%</li> <li>• 0-1 risk factors &amp; 10-yr risk &lt;10%</li> </ul> | <ul> <li>4 statin benefit groups:</li> <li>Clinical ASCVD</li> <li>Primary LDL-C ≥190 mg/dl</li> <li>DM without clinical ASCVD</li> <li>No DM/CVD with 10-yr ASCV</li> <li>D risk</li> <li>≥7.5%</li> </ul> |
| Rx targets          | LDL-C primary target • <70mg/dl • <130mg/dl (<100 if risk 10-20 %) • <160mg/dl                                                                                                           | Intensity of statin therapy High or moderate intensity                                                                                                                                                      |
| Rx recomm endations | Statin (or bile acid sequestrants or nicotinic acid) to achieve LDL -C goal                                                                                                              | Maximally tolerated statin first-l ine to reduce risk of ASCVD events                                                                                                                                       |



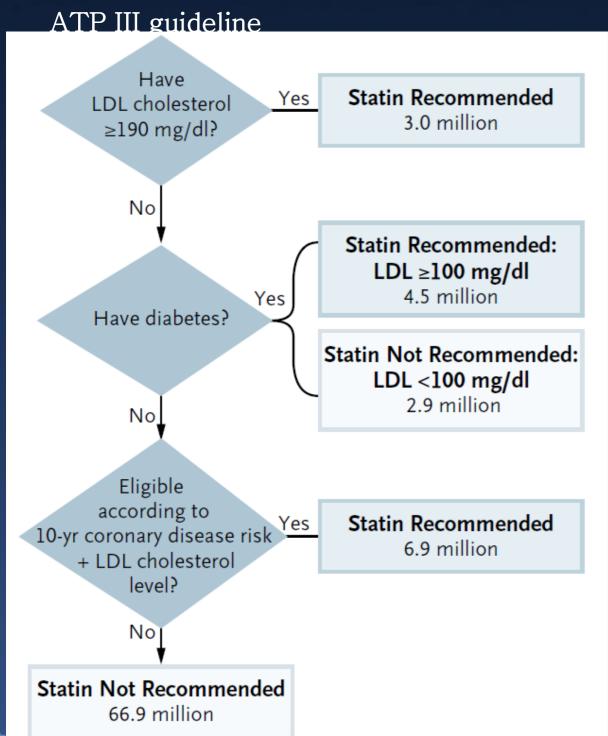

## Estimated numbers of adults eligible for statin therapy by ATP III and ACC/AHA guideline in US

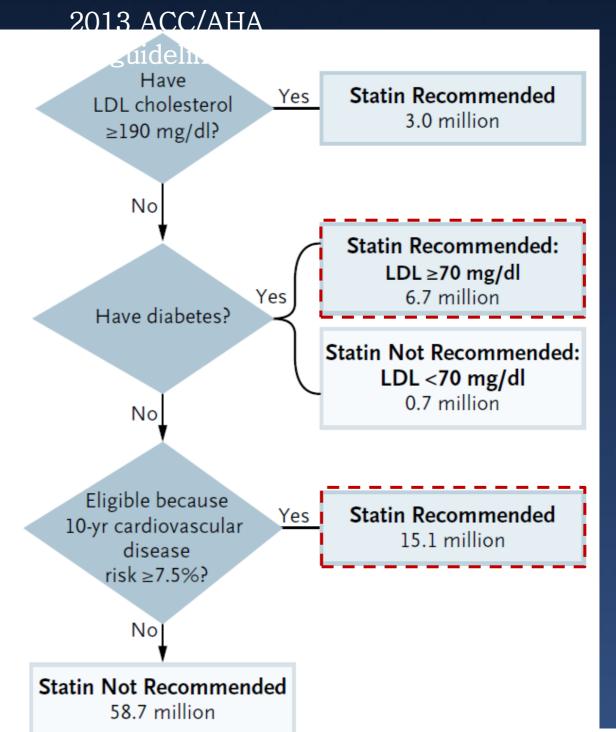

Ages of 40 and 75 Years in National Health and Nutrition Examination Surveys

Secondary prevention for adults with CVD

ATP III guideline

2013 ACC/AHA



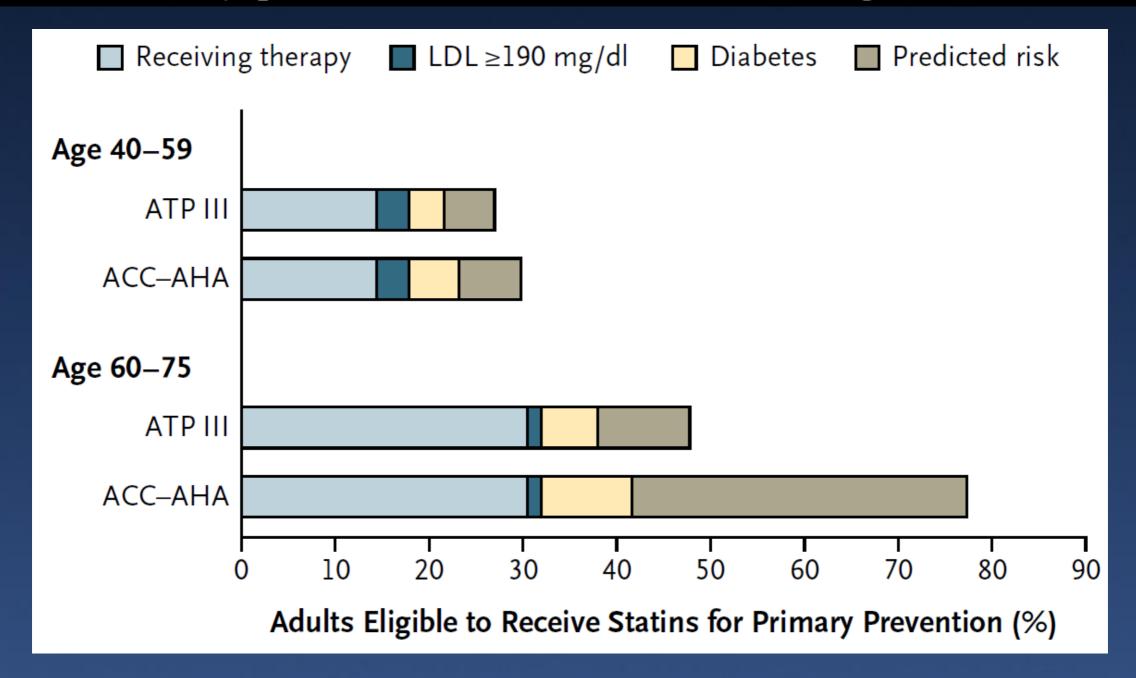



## Estimated numbers of adults eligible for statin therapy by ATP III and ACC/AHA guideline in US

#### Primary prevention for adults receiving no statin





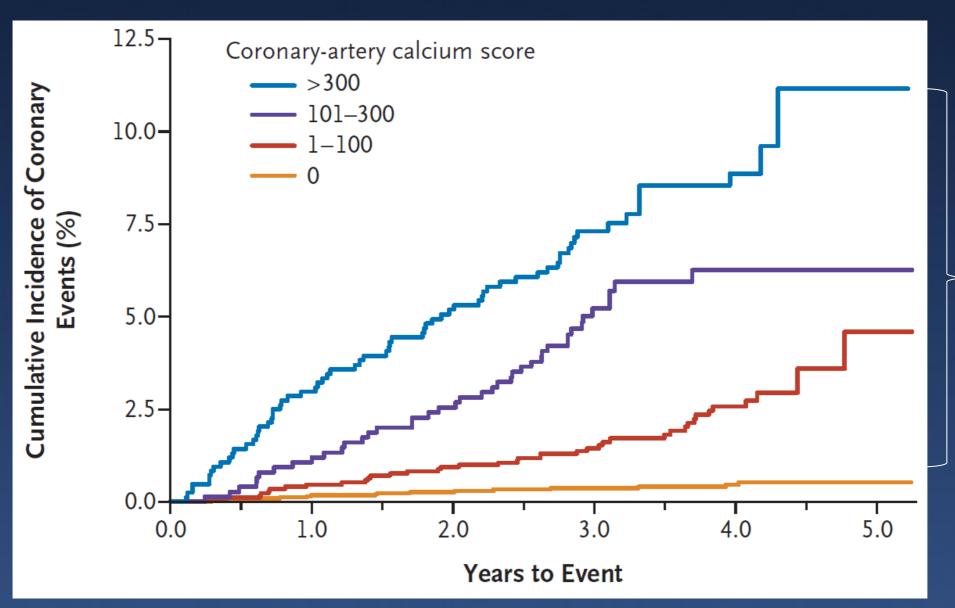





THE CATHOLIC UNIVERSITY OF KOREA

## ACC/AHA guideline substantially increased the number of older adults without CVD compared with ATP III

#### Primary prevention for adults receiving no statin








## CAC (Coronary calcium score) is a strong predictor of incident coronary heart disease

MESA, Multi-Ethnic Study of Atherosclerosis 6,722 men and women without clinical CVD 3.8 years follow up



P<0.001
for differences
among all curves





## Participants with CAC were more likely to be statin eligible by ACC/AHA than by ATP III

Comparison of Statin Eligibility by 2004 ATP III vs 2013 ACC/AHA Guidelines Across CAC



\*CAC, Coronary calcium score as measured by the Agatston score

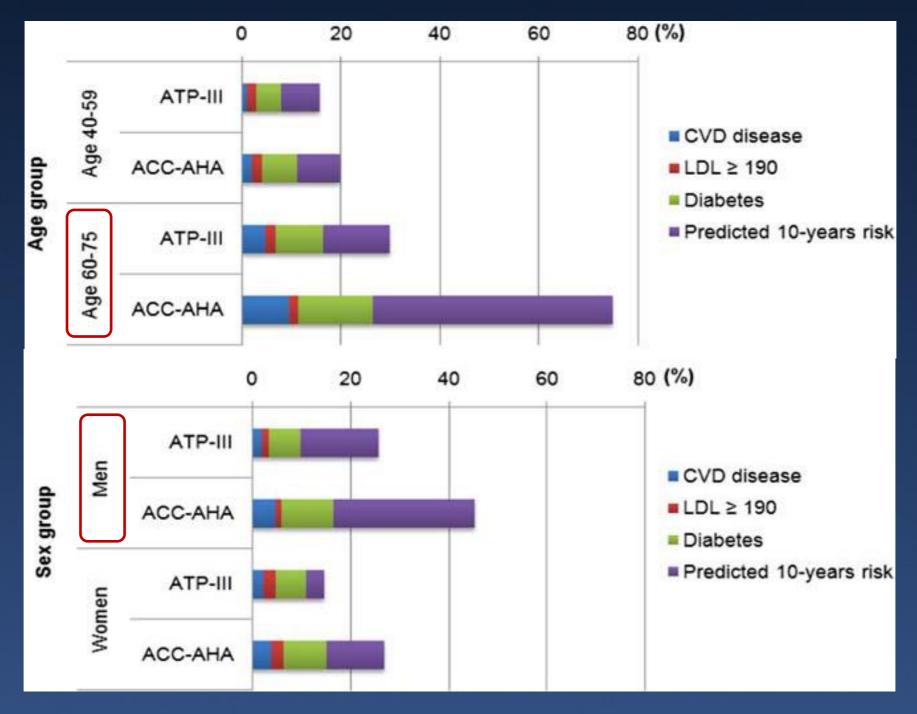




## Estimated numbers of adults eligible for statin therapy by ATP III and ACC/AHA guideline in a Korean population

18,573 participants aged 40-75 yr in KNHNES 2008-2012

#### Statin eligible by ATP III vs Statin eligible by ACC/AHA 18.6% vs 35.1%


|                                      | ATP-III guidelines<br>(N = 3730) | ACC/AHA guidelines<br>(n = 7766) | New candidates for<br>statin therapy†<br>(n = 4397) |
|--------------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------|
|                                      |                                  |                                  |                                                     |
| Prevalent CVD, no (%)                | 514 (11.4)                       | 982 (11.7)                       | 468 (10.5)                                          |
|                                      |                                  |                                  |                                                     |
| $LDL \ge 190 \text{ mg/dL, no.}$ (%) | 388 (10.3)                       | 388 (5.4)                        | 0                                                   |
|                                      |                                  |                                  |                                                     |
| Predicted 10-y risk, no. (%)         | 1561 (45.1)                      | 4526 (56.3)                      | 3326 (72.9)                                         |
|                                      |                                  |                                  |                                                     |

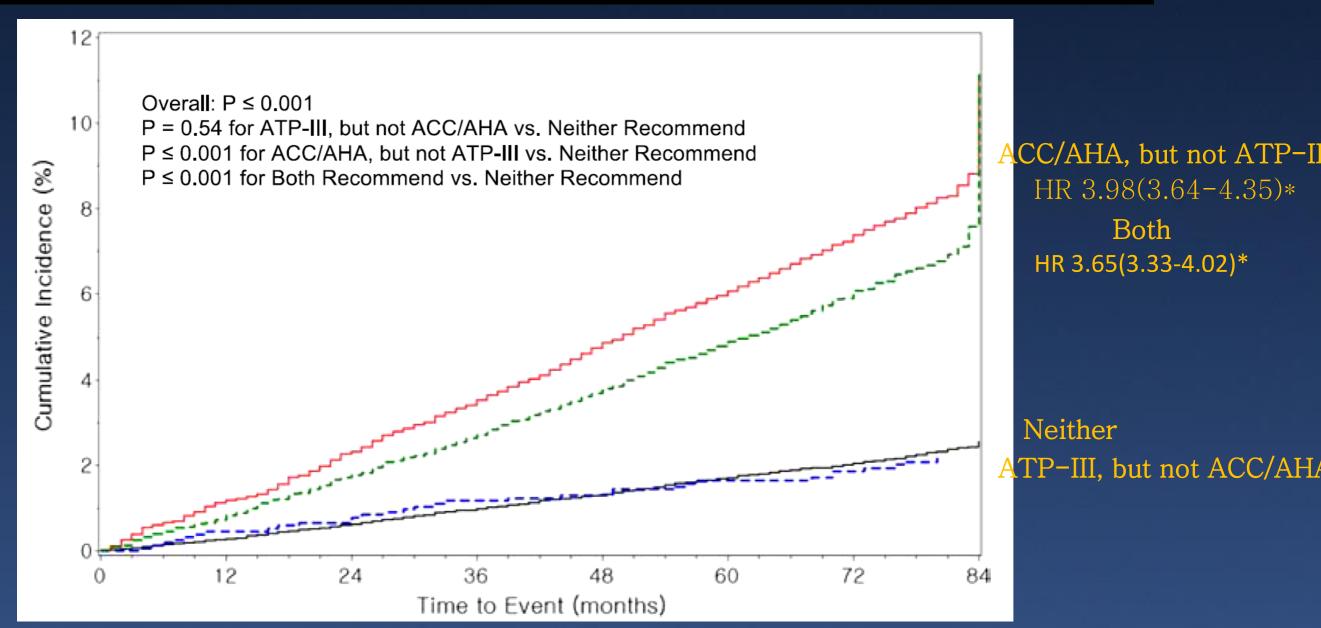




## Statin candidates by ACC/AHA guideline substantially increased among older adults and men

18,573 participants aged 40-75 yr in KNHNES 2009-2012








## Identification of adults at higher ASCVD risk by ATP III and ACC/AHA guideline in a Korea population

18,573 participants aged 40- 75 yr in KNHNES 2008-2012 External cohort (n = 63,329) from the 2003 National Health Examination

#### Seven-year observed ASCVD events among Korean adults

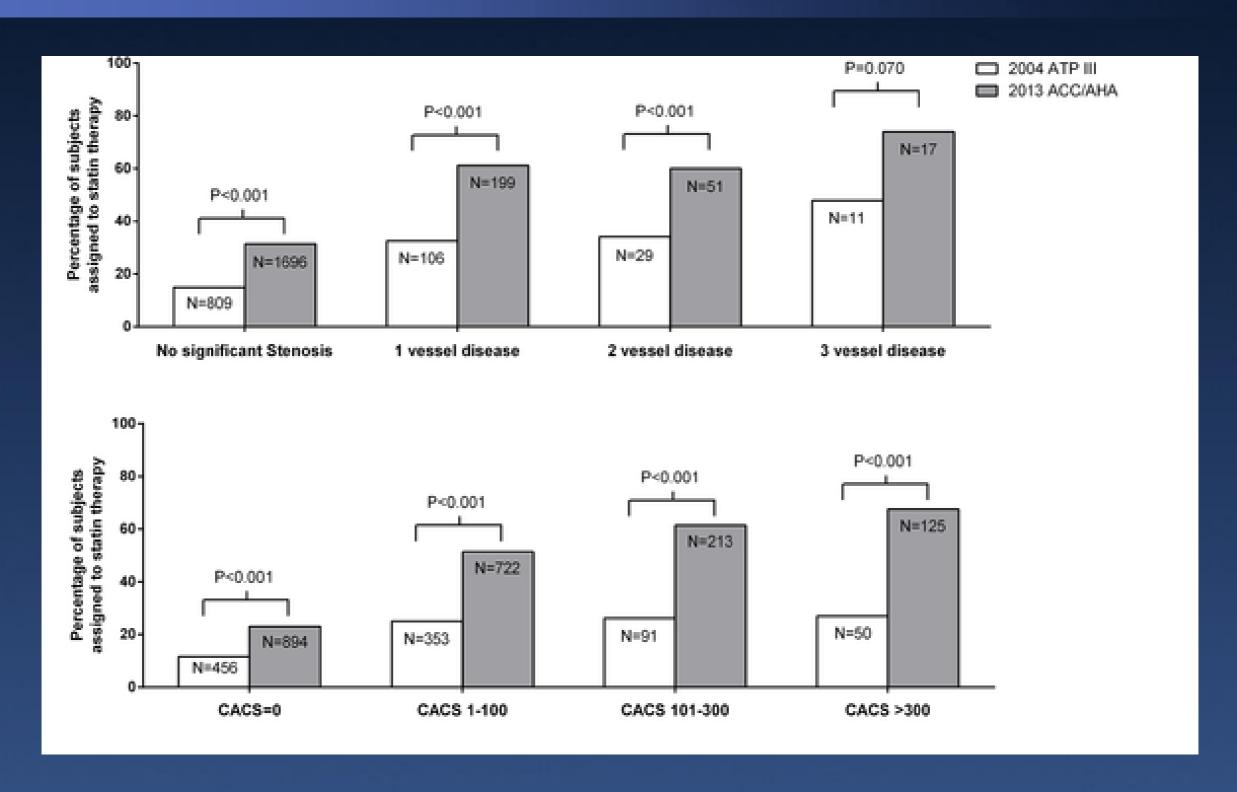








## 2013 ACC/AHA guidelines is better in identifying subjects with subclinical coronary atherosclerosis


5,837 without CVD and asymptomatic subjects who underwent CCTA (mean age 53.5, men 72.1%) at Asan Medical Center between January 2007 and June 2011.

| 2013 ACC/AHA guideline                                       |             |
|--------------------------------------------------------------|-------------|
| LDL-C $\geq$ 190 mg/dl                                       | 90 (1.5)    |
| Diabetes & 40-75 & LDL 70-189 mg/dL                          | 663 (11.4)  |
| No Diabetes & 40–75 & LDL 70–189 mg/dL& ASCVD≥ 7.5%          | 1210 (20.7) |
| Total candidates                                             | 1963 (33.6) |
| 2004 ATP III guideline                                       |             |
| CHD risk equivalents*& LDL-C≥ 100 mg/dl                      | 597 (10.2)  |
| No Diabetes & CHD risk factor $\geq$ 2                       |             |
| CHD risk 10–20% & LDL-C $\geq$ 130 mg/dl                     | 263 (4.5)   |
| CHD risk <10% & LDL-C $\geq$ 160 mg/dl                       | 49 (0.8)    |
| No CHD & no Diabetes & CHD risk factor 0–1                   |             |
| LDL-C ≥ 190 mg/dl                                            | 46 (0.8)    |
| Total candidates                                             | 955 (16.4)  |
| Subjects eligible for statins by 2013 ACC/AHA guideline only | 1110 (19.0) |
| Subjects eligible for statins by 2004 ATP III guideline only | 102 (1.7)   |
| Subjects eligible for statins by both guidelines             | 853 (14.6)  |





## 2013 ACC/AHA guidelines is better in identifying subjects with subclinical coronary atherosclerosis





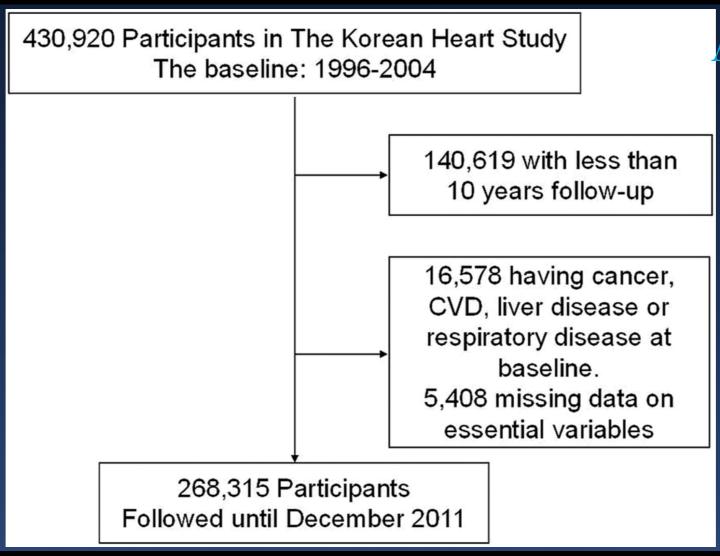


## 2013 ACC/AHA guidelines is better in identifying subjects with subclinical coronary atherosclerosis

| MDCT findings        | N (%)        | 2004 ATP III     |                  | 2013 ACC/AHA     |                  | P value* | P value <sup>†</sup> |
|----------------------|--------------|------------------|------------------|------------------|------------------|----------|----------------------|
|                      |              | Sensitivity      | Specificity      | Sensitivity      | Specificity      |          |                      |
| Significant stenosis | 432 (7.4%)   | 33.8 (29.5–38.4) | 85.0 (84.1–86.0) | 61.8 (57.1–66.3) | 68.6 (67.4–69.9) | <.001    | <.001                |
| CACS>0               | 1945 (33.4%) | 25.5 (23.6–27.5) | 88.3 (87.2–89.3) | 54.7 (52.5–56.9) | 77.0 (75.7–78.3) | <.001    | < .001               |
| CACS>100             | 533 (9.2%)   | 26.5 (22.9–30.4) | 84.7 (83.7–85.6) | 63.6 (59.4–67.6) | 69.4 (68.2–70.7) | <.001    | < .001               |
| Any plaque           | 2330 (39.9%) | 24.7 (23.0–26.5) | 89.2 (88.1–90.2) | 52.3 (50.2–54.3) | 78.8 (77.4–80.1) | <.001    | < .001               |






#### Contents

- 1. CVD Risk and Lipid in Asia Population
- 2. Comparison of Statin Eligibility between ATP III Guideline vs ACC/AHA Guideline
- 3. Introduction of Korean Risk Prediction Model
- 4. Effect of High intensity statin therapy in ASCVD



## A coronary heart disease prediction model : the Korean Heart Study

#### Study population



Aged 30-74 yr No CHD

#### Variable & Outcome

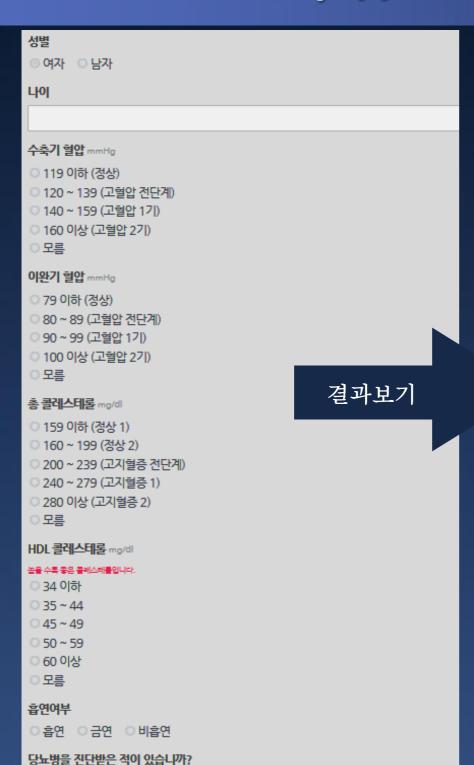
Variable: Age, BP, total and high-density lipoprotein-cholesterol (HDL-C), diabetes smoking

Outcome: Non-fatal or fatal CHD





HRs for CHD risk factors in men in the Korean Heart Study

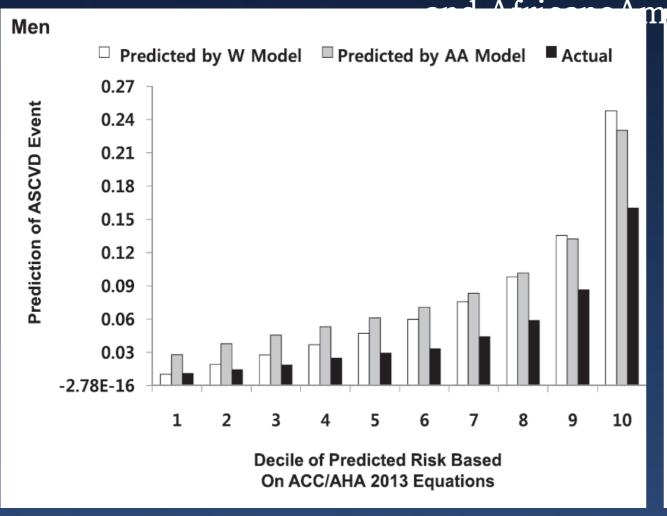

|      |                          | Basic model<br>HR (95% CI) | Model 1<br>HR (95% CI)                     | Model 2<br>HR (95% CI) | Model 3<br>HR (95% CI) |
|------|--------------------------|----------------------------|--------------------------------------------|------------------------|------------------------|
|      | Age                      | 1.13 (1.09 to 1.18)        | 1.13 (1.08 to 1.18)                        | 1.13 (1.08 to 1.18)    | 1.13 (1.08 to 1.18)    |
|      | Blood pressure           |                            |                                            |                        |                        |
|      | Nomal                    | 1.00                       | 1.00                                       | 1.00                   | 1.00                   |
|      | Prehypertension          | 1.30 (1.16 to 1.46)        | 1.29 (1.15 to 1.45)                        | 1.32 (1.17 to 1.48)    | 1.28 (1.14 to 1.43)    |
|      | Stage-1 hypertension     | 1.74 (1.53 to 1.97)        | 1.72 (1.52 to 1.96)                        | 1.78 (1.57 to 2.02)    | 1.68 (1.48 to 1.91)    |
|      | Stage-2 hypertension     | 2.22 (1.91 to 2.57)        | 2.20 (1.90 to 2.56)                        | 2.28 (1.97 to 2.65)    | 2.13 (1.84 to 2.48)    |
|      | Total cholesterol, mg/dL |                            |                                            |                        |                        |
|      | <160                     | 1.00                       | 1.00                                       | 1.00                   | 1.00                   |
|      | 160–199                  | 1.26 (1.07 to 1.49)        | 1.34 (1.14 to 1.59)                        | 1.09 (0.90 to 1.32)    | 1.21 (1.02 to 1.43)    |
|      | 200–239                  | 1.81 (1.53 to 2.13)        | 2.02 (1.71 to 2.38)                        | 1.23 (0.99 to 1.53)    | 1.67 (1.42 to 1.98)    |
|      | 240–279                  | 2.42 (2.01 to 2.92)        | 2.77 (2.30 to 3.34)                        | 1.34 (1.04 to 1.73)    | 2.19 (1.81 to 2.65)    |
|      | ≥280                     | 3.79 (2.93 to 4.91)        | 4.45 (3.44 to 5.76)                        | 2.02 (1.47 to 2.77)    | 3.37 (2.59 to 4.38)    |
|      | Smoking                  |                            |                                            |                        |                        |
|      | Never                    | 1.00                       | 1.00                                       | 1.00                   | 1.00                   |
|      | Former                   | 1.01 (0.88 to 1.16)        | 1.02 (0.89 to 1.17)                        | 1.02 (0.89 to 1.17)    | 1.00 (0.87 to 1.15)    |
|      | Current                  | 1.93 (1.72 to 2.17)        | 1.86 (1.65 to 2.09)                        | 1.96 (1.75 to 2.21)    | 1.87 (1.66 to 2.11)    |
|      | Diabetes                 | 4.00                       | 4.00                                       | 4.00                   | 1.00                   |
|      | No                       | 1.00                       | 1.00                                       | 1.00                   | 1.00                   |
|      | Yes                      | 1.69 (1.51 to 1.89)        | 1.63 (1.46 to 1.82)                        | 1.72 (1.53 to 1.92)    | 1.65 (1.48 to 1.85)    |
|      | HDL-cholesterol, mg/dL   |                            | 1.00                                       |                        |                        |
|      | <35                      |                            | 1.00<br>0.66 (0.57 to 0.75)                |                        |                        |
|      | 35–44<br>45–49           | HDL-C                      | 0.56 (0.48 to 0.65)                        |                        |                        |
|      | 50–59                    |                            | 0.45 (0.48 to 0.65)<br>0.45 (0.39 to 0.52) |                        |                        |
|      | ≥60                      |                            | 0.34 (0.28 to 0.41)                        |                        |                        |
|      | LDL-cholesterol, mg/dL   |                            | 0.54 (0.28 to 0.41)                        |                        |                        |
|      | <100                     |                            |                                            | 1.00                   |                        |
|      | 100–129                  |                            |                                            | 1.23 (1.06 to 1.43)    |                        |
|      | 130–149                  |                            |                                            | 1.50 (1.25 to 1.80)    |                        |
|      | ≥150                     |                            |                                            | 1.97 (1.61 to 2.40)    |                        |
|      | Triglycerides, mg/dL     |                            |                                            | 1.57 (1.01 to 2.40)    |                        |
|      | <100                     |                            |                                            |                        | 1.00                   |
|      | 100–149                  |                            |                                            |                        | 1.21 (1.07 to 1.37)    |
|      | 150–199                  |                            |                                            |                        | 1.35 (1.18 to 1.54)    |
|      | 200–249                  |                            |                                            |                        | 1.39 (1.19 to 1.63)    |
|      | ≥250                     |                            |                                            |                        | 1.30 (1.11 to 1.52)    |
|      | ROC (95% CI)             | 0.756 (0.745 to 0.766)     | 0.764 (0.752 to 0.774)                     | 0.758 (0.747 to 0.769) | 0.757 (0.746 to 0.768) |
| RSIT | Continuous NRI (95% CI)  | Referent model             | 0.284 (0.231 to 0.339)                     | 0.185 (0.124 to 0.246) | 0.109 (0.051 to 0.162) |
|      | V'S HOSDITAI             |                            | (                                          |                        | INVASCUIIAT ( ANTAR    |

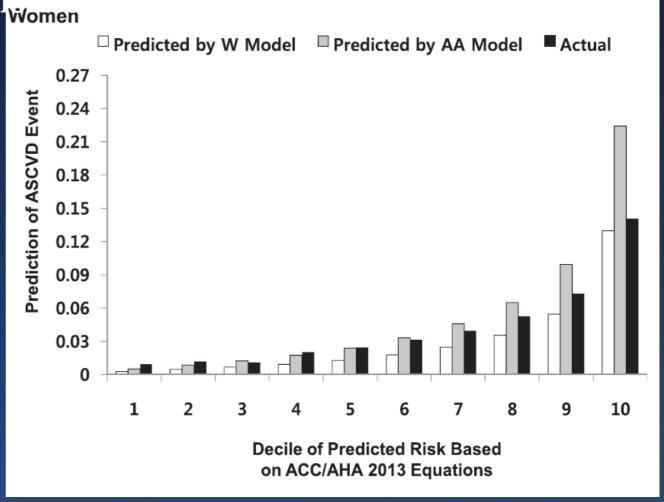


Jee

## 관상동맥질환위험 예측모형

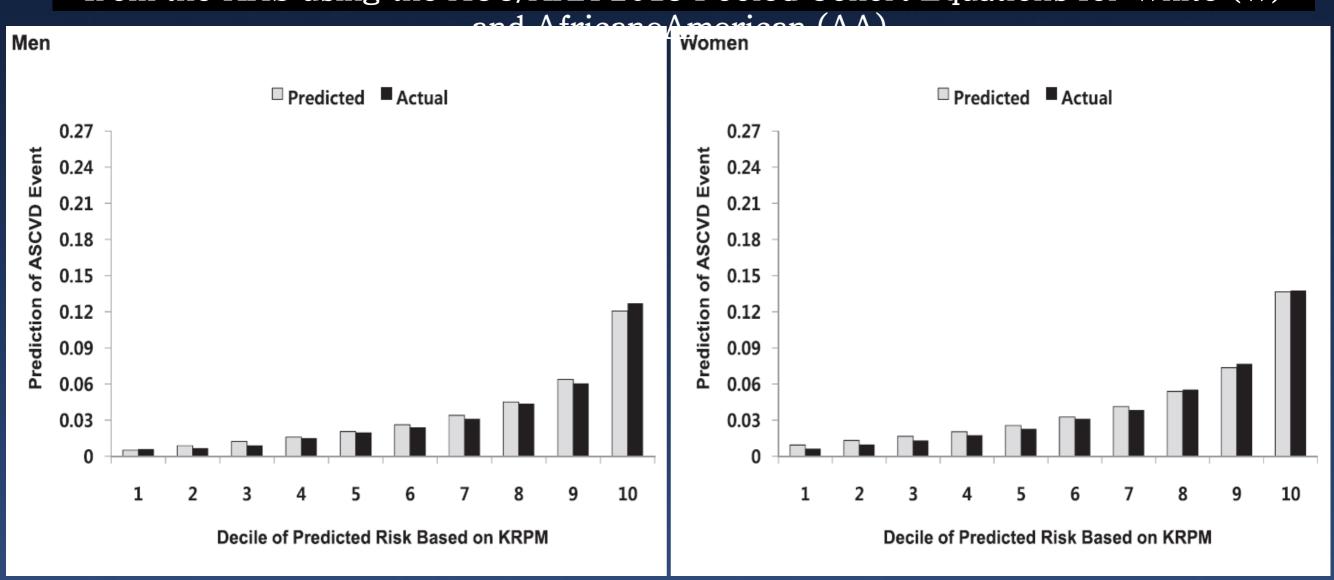
### http://cmerc.yuhs.ac/mobileweb/




이 이 아니오

## Evaluation of predictive ability of the ACC/AHA 2013 Pooled Cohort Equations for the KHS population


Ten-Year Probability of Predicted and Actual ASCVD Events in Men and Women from the KHS using the ACC/AHA 2013 Pooled Cohort Equations for White (W)

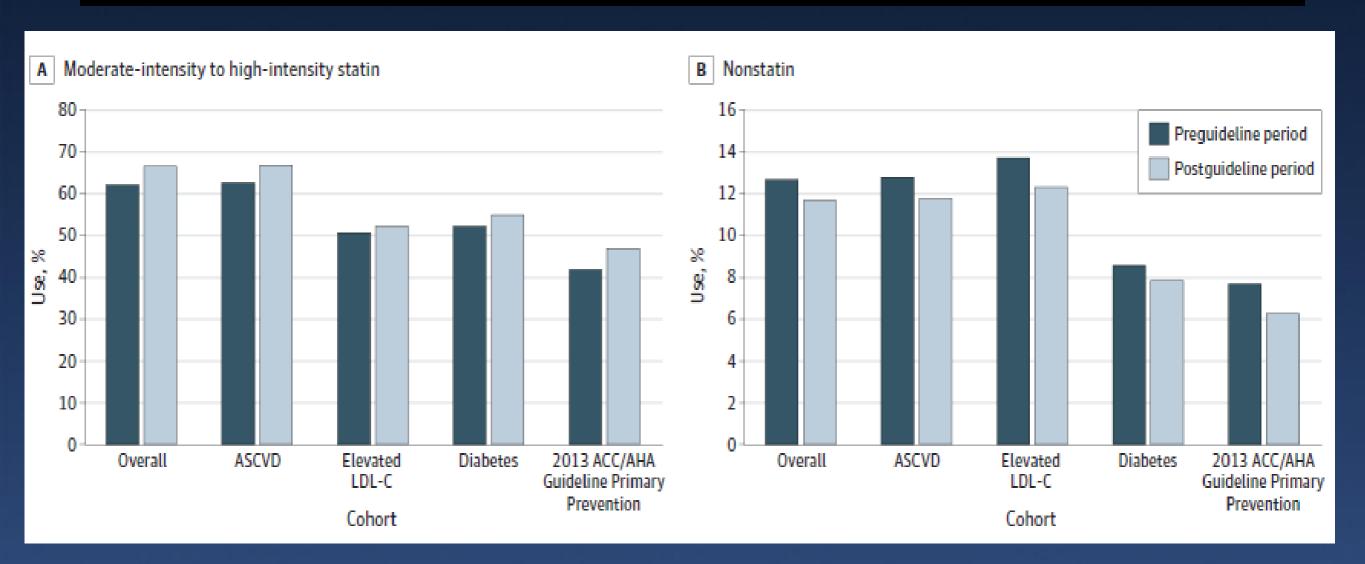




## 10-Year Probability of Predicted and Actual ASCVD Events by Korean Risk Prediction Model

Ten-Year Probability of Predicted and Actual ASCVD Events in Men and Women from the KHS using the ACC/AHA 2013 Pooled Cohort Equations for White (W)




Calibration for  $\chi^2$ : 25.90, P = 0.002 for men; 14.69, P = 0.100 for women





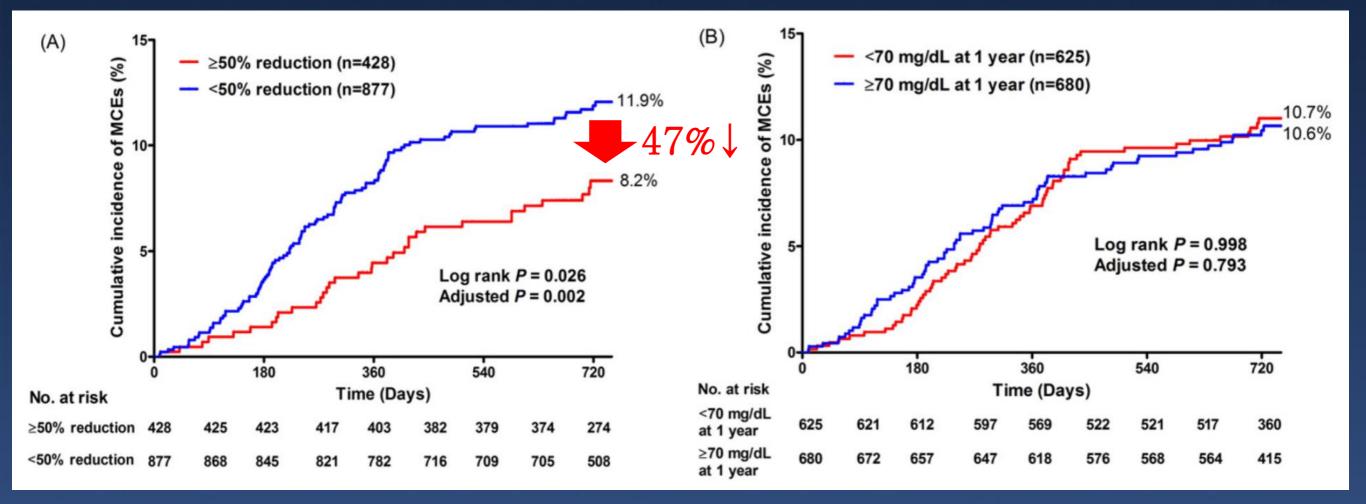
## A trend toward increasing use of moderate-intensity to high intensity statins overall and in the ASCVD cohort

#### Overall Use for the Pre-guideline and Post-guideline Periods



Adoption of the 2013 ACC/AHA Cholesterol Management Guideline in cardiology practices






## 50% Reduction vs. LDL Target 70 mg/dL in AMI pts.

Primary endpoint: 2 year major cardiac event including cardiac death, non-fatal myocardial infraction, percutaneous coronary intervention, and coronary artery by bypass grafting after

KAGANIR! discharge

mean LDL-C: 126mg/dL





## Korean Data: MUSTANG Study

#### Clinical Investigations



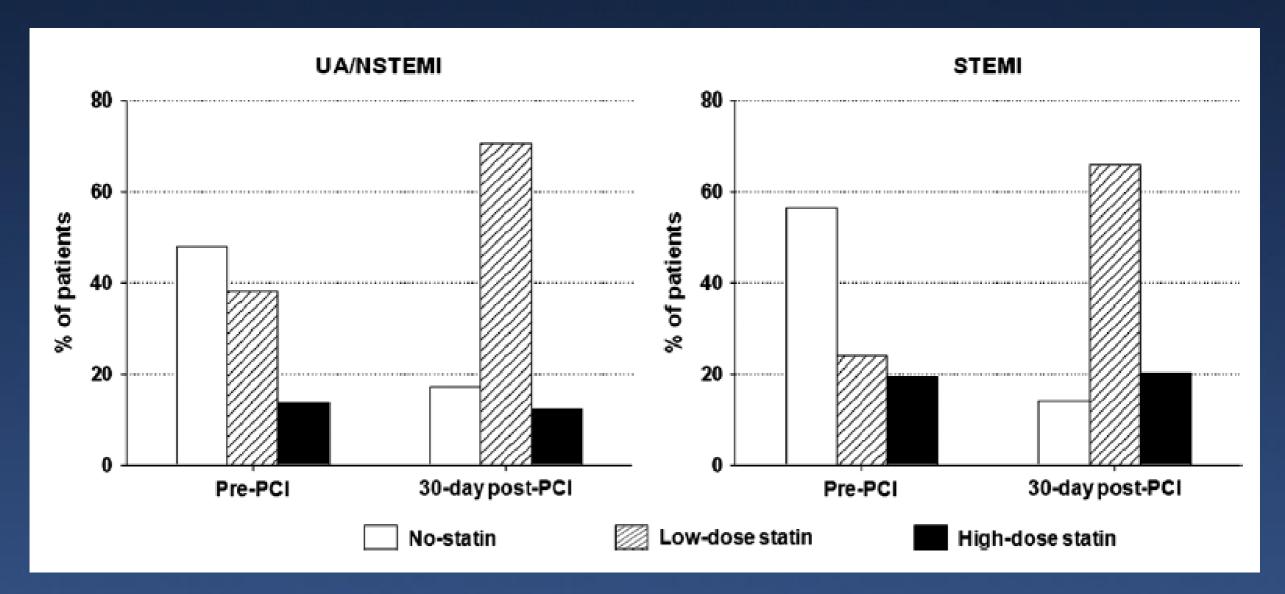
Current Statin Usage for Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention: Multicenter Survey in Korea

Mi-Jeong Kim, MD; Doo Soo Jeon, MD; Hyeon-Cheol Gwon, MD; Soo-Joong Kim, MD; Kiyuk Chang, MD; Hyo-Soo Kim, MD; Seung-Jea Tahk, MD; for Korean MUSTANG Investigators

Cardiovascular Center (M.-J. Kim, Jeon), Incheon St. Mary's Hospital, The Catholic University, Incheon, Republic of Korea; Cardiac and Vascular Center (Gwon), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Division of Cardiology (S.-J. Kim), College of Medicine, Kyung Hee University, Seoul, Republic of Korea; Cardiovascular Center (Chang), Seoul St. Mary's Hospital, The Catholic University, Seoul, Republic of Korea; Cardiac Catheterization Laboratory and Coronary Intervention (H.-S. Kim), Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Cardiology (Tahk), Ajou University Hospital, Suwon, Republic of Korea

### 3362 patients with ACS underwent PCI

- diagnosed with unstable angina, (UA) non-ST-elevated MI(NSTEMI), or ST-elevated MI(STEMI)
- High-dose statin treatment was defined as <u>atorvastatin ≥40 mg</u> or rosuvastatin ≥20 mg/day.
- The patterns of statin usage were investigated for 30 days after the index PCI.






### About half were never treated with statin prior to PCI

Statin dosage used in pre-PCI and post-PCI period in patients with UA/NSTEMI and STEMI

The usage of low-dose statin sharply increased after PCI compared with pre-PCI, but that of high-dose remained similar between the pre-PCI and post-PCI period





## Conclusion

- 2013 ACC/AHA guideline substantially increased the number of statin Tx candidates, esp. the number of a predicted 10 year risk group
- 2013 ACC/AHA guideline has good performance for identifying subjects with subclinical coronary atherosclerosis
- Korean risk prediction model has superiority in predicting CVD risks in Korean general population.
- High intensity statin therapy in patients with ACS is less prescribed than we imagine.



