What to Do for a 75 Year Old Man of Severe Ebstein Anomaly with Decreased RV Function, Atrial Fibrillation

Jong-Min Song

Asan Medical Center University of Ulsan College of Medicine

The Korean Society of Cardiology COI Disclosure

Name of First Author: Jong-Min Song

The authors have no financial conflicts of interest to disclose concerning the presentation

2017 Annual Spring Scientific Conference of the KSC in conjunction with KHRS, KSIC, KSE, and KSoLA

Attenhofer Jost CH, Circulation. 2007;115:277-285

Severe Ebstein's Anomaly

Displacement of Septal Leaflet

Shiina A, JACC 1984:356-70

Anatomic Assessment

OTricuspid valve leaflets

- Apical displacement of septal/posterior leaflet (> 8 mm/m² or 20 mm in adults)
- Tethering, elongation, absence of the leaflets
- Leaflet fenestrations (anterior leaflet)
- Accessory leaflet tissue (muscular shelf)
 - Between septal and anterior leaflets
- Annulus dilatation

Anatomic Assessment

ORight ventricle

- Atrialized right ventricle
- Right ventricular dilatation
 - Between annulus and posterior leaflet
- Posterior aneurysm/RVOT aneurysm
 > 20%

OLeft ventricle

- Size and shape of the left ventricle
- Mitral valve prolapse
 - Elongated chordae

Functional Assessment

OTricuspid valve

- Tricuspid regurgitation or stenosis
- Pressure gradient across the tricuspid valve
- Severity of tricuspid regurgitation
- Right ventricular inflow tract obstruction

Functional Assessment

ORight ventricle

- Progression of chamber enlargement
- Right ventricular function

OLeft ventricle

- Left ventricular function
- Mitral regurgitation (severity)

PHILIPS

Severe Ebstein Anomaly

Carpentier Classification

The volume of the true RV is adequate

A large atrialized component of the RV exists, but the anterior leaflet of the TV moves freely

The anterior leaflet is severely restricted in its movement and may cause significant obstruction of the RVOT

Almost complete atrialization of the RV except for a small infundibular component

Shiina A, JACC 1984:356-70

Anatomy & Functional Disability

Shiina A, JACC 1984:356-70

Surgery vs. Observation

Alleged CHD, DOE Fc I

Anatomic Assessment

OAssociated anomalies

- Patent foramen ovale/atrial septal defect
- RV inflow and outflow tract obstruction
- VSD
- Accessory conduction pathway (WPW syndrome), increasing risk of atrial tachycardia
- PS
- TOF
- CoA
- Mitral valve abnormalities

Surgical Intervention

• Surgeons with training and expertise in CHD should perform tricuspid valve repair or replacement with concomitant closure of an ASD, when present, for patients with Ebstein's anomaly with the following indications:

- **Symptoms** or deteriorating exercise capacity. (*Level of Evidence: B*)
- Cyanosis (oxygen saturation less than 90%). (Level of Evidence: B)
- **Paradoxical embolism**. (Level of Evidence: B)
- Progressive **cardiomegaly** on chest x-ray. (*Level of Evidence: B*)
- Progressive RV dilation or reduction of RV systolic function. (Level of Evidence: B)

Circulation. 2008;118:2395-2451

Surgical Intervention

Indications	Class ^a	Level ^b
Indications for surgery		
 Surgical repair should be performed in patients with more than moderate TR and symptoms (NYHA class >II or arrhythmias) or deteriorating exercise capacity measured by CPET 	I	v
 If there is also an indication for tricuspid valve surgery, then ASD/PFO closure should be performed surgically at the time of valve repair 	I	с
 Surgical repair should be considered regardless of symptoms in patients with progressive right heart dilation or reduction of RV systolic function and/or progressive cardiomegaly on chest X-ray 	lla	с

Surgery vs. Observation

Decreased RV function

Surgery vs. Observation

Decreased RV function 75 years old

Natural Course in Exercise Capacity

Table I. Demographics

Characteristic

Male gender, n (%) Age at first CPX (y), median (range)	13 (57) 17.9 (8.1-52.5)
Time from first to last CPX (y), median (range)	3.3 (0.6-7.3)
No. of CPX	
2	12 (52%)
3	6 (26%)
4	3 (13%)
5	2 (9%)
Mean ± SD	2.8 ± 1.0
Severe tricuspid regurgitation*	9 (39%)
Atrial level right to left shunting [†]	7 (30%)
ES grade ^{1,10}	
1	7 (32%)
2	10 (45%)
3	4 (18%)
4	1 (5%)
-	

N = 23 patients; 64 exercise tests.

*Based on echocardiogram within 6 months of the first exercise test. \uparrow Oxygen saturation at rest or with exercise \leq 93%.

Am Heart J 2012;163:486-91

Table V. Average rate of change per year for VO_2 % and O_2 pulse%

	Vo ₂ %: change/y		O ₂ pulse	%: change/y		
	Mean ± SD	P*	P [†]	Mean ± SD	P*	P [†]
Overall (n = 23) Age at initial CPX	-1.87 ± 8.04	.05		-2.49 ± 9.96	.03	
Age $< 18 \text{ y} (n = 12)$	-3.04 ± 6.78	.01	.15	-4.06 ± 9.33	.01	.12
Age ≥ 18 y (n = 11)	-0.43 ± 8.79	.77		-0.58 ± 9.88	.73	
Tricuspid regurgitation						
Mild or moderate (n = 14)	-1.59 ± 8.85	.18	.57	-1.92 ± 8.93	.11	.44
Severe $(n = 9)$	-2.67 ± 6.92	.11		-4.11 ± 11.56	.13	
ES grade						
1 (n = 7)	-1.91 ± 9.87	.36	.82	-2.26 ± 8.46	.22	.84
2 (n = 10)	-3.43 ± 7.94	.04		-3.8 ± 12.48	.12	
3 or 4 (n = 5)	0.02 ± 4.23	.99		-1.64 ± 6.53	.30	

Overall and by age, severity of tricuspid regurgitation, and ES grade. Other abbreviations as in Table III.

* P value from 1 sample t test comparing mean slope to 0.

† P value from 2 sample *t* test comparing mean slopes in the groups.

Am Heart J 2012;163:486-91

21 patients with Ebstein anomaly (between 6 and 59 years of age)

		Baseline test	Follow-up	P values*
Sex	3/2	5/16	5/16	_
Age	Years	24.5 (13.7 - 43.6)	26.7 (14.8 - 44.9)	_
Tricuspid regurgitation	I/II/III/IV	0/2/16/3	9/10/2/0	< .001
RER	Peak	1.07 (1.03 – 1.13)	1.07 (1.03 – 1.13)	.501
SpO ₂ † (%)	Rest	98 (95 – 99)	99 (97 - 100)	.004
	Peak	92 (84 – 98)	97 (95 - 100)	.010
Peak Vo ₂	mL/min/kg	21.0 (17.6 - 23.5)	20.7 (18.8 - 27.9)	.009
	% of predicted	68.4 (52.2 - 83.3)	77.3 (57.2 - 91.4)	.009
VE/VCO2	Slope	32.5 (30.3 - 43.8)	29.3 (27.8 - 33.1)	.001

TABLE 1. Changes in CPET: Comparing Baseline Testing with Follow-up After Surgical Intervention

CPET, Cardiopulmonary exercise test; RER, respiratory exchange ratio. *2-sided Wilcoxon test. †SpO2 could be assessed in only 20 patients.

JThorac Cardiovasc Surg 2011;141:1192-5

21 patients with Ebstein anomaly (between 6 and 59 years of age)

		Primary surgery (group 1) n = 14, Median (Q1-Q3)		Reoperation (group 2) n = 7, Median (Q1-Q3)			
		Baseline test	Follow-up	P values*	Baseline test	Follow-up	P values*
Sex	3/₽	3/11			2/5		.557†
Age	Years	18.3 (10.8-46.3)			31.1 (21.1-41.3)		.224‡
TR	I/II/III/IV	0/2/11/4	5/8/1/0	.002	0/0/5/2	4/2/1/0	.014
RER	Peak	1.04 (1.01-1.09)	1.04 (1.01-1.12)	.248	1.12 (1.08-1.23)	1.10 (1.07-1.16)	.672
SpO ₂ (%)§	Rest	95 (92-98)	99 (99-100)	.003	99 (98-100)	99 (98-100)	.279
	Peak	88 (78–94)	99 (97-100)	.003	99 (98-100)	99 (98-100)	.317
peak Vo ₂	mL/min/kg	21.0 (17.8-22.1)	20.3 (18.5-27.8)	.059	20.3 (16.4-24.1)	21.3 (18.5-29.5)	.091
_	% predicted	68.8 (51.0-83.0)	77.8 (58.0-92.1)	.064	56.4 (53.1-86.7)	73.6 (55.5-92.1)	.063
VE/VCO ₂	Slope	32.3 (30.8-50.5)	29.4 (27.8-32.9)	.005	32.5 (30.0-36)	29.3 (26.5-34.5)	.018

TABLE 2. Changes in CPET variables during follow-up by patients undergoing primary surgery and patients being reoperated

CPET, Cardiopulmonary exercise test; RER, respiratory exchange ratio; TR, tricuspid regurgitation. *2-sided Wilcoxon test. \dagger Chi-squared test comparing the sex distribution of the 2 subgroups. \ddagger 2-sided Mann-Whitney-U test comparing the age of the 2 subgroups at baseline test. \S SpO₂ saturation could be assessed in only 20 patients.

JThorac Cardiovasc Surg 2011;141:1192-5

Functional Status After Operation for Ebstein Anomaly

The Mayo Clinic Experience

Morgan L. Brown, MD,* Joseph A. Dearani, MD, FACC,* Gordon K. Danielson, MD, FACC,* Frank Cetta, MD, FACC,†‡ Heidi M. Connolly, MD, FACC,‡ Carole A. Warnes, MD, FACC,†‡ Zhuo Li, MS,§ David O. Hodge, MS,§ David J. Driscoll, MD, FACC†

Rochester, Minnesota

Objectives	The objective of this study was to review the long-term functional outcome of patients with Ebstein anomaly who had cardiac operation at our institution.
Background	Ebstein anomaly is a spectrum of tricuspid valvular and right ventricular dysplasia. Many patients will require operation in an attempt to improve quality of life.
Methods	From April 1, 1972, to January 1, 2006, 539 patients with Ebstein anomaly underwent 604 cardiac operations at the Mayo Clinic in Rochester, Minnesota. Patient records were reviewed, and all patients known to still be alive were mailed a medical questionnaire or contacted by telephone.
Results	At the initial operation at our institution, the mean age of the patients was 24 years (range 8 days to 79 years) and 53% were female patients. Survival at 5, 10, 15, and 20 years was 94%, 90%, 86%, and 76%, respectively. Survival free of late reoperation was 86%, 74%, 62%, and 46% at 5, 10, 15, and 20 years, respectively. Surveys were returned by 285 of 448 (64%) patients known to be alive at the time of this study. Two hundred thirty-seven (83%) patients were in New York Heart Association functional class I or II, and 34% were taking no cardiac medication. One hundred three patients (36%) reported an incident of atrial fibrillation or flutter, 5 patients (2%) reported having had endocarditis, and 1 patient (<1%) reported having a stroke. There were 275 pregnancies among 82 women. The recurrence of congenital heart disease was reported in 9 of 232 (3.9%) liveborn children.
Conclusions	Patients have good long-term survival and functional outcomes after undergoing surgery for Ebstein anomaly. Atrial arrhythmias are common both before and after surgery. Many patients have had one or more successful pregnancies with a low-recurrence risk of congenital heart disease. (J Am Coll Cardiol 2008;52:460–6) © 2008 by the American College of Cardiology Foundation

Health Status Questionnaires NYHA functional class

- I (43%)
- II (40%)
- III (12%)
- IV (4%)

J Am Coll Cardiol 2008;52:460–6

Figure 3 Self-Reported Activity Scale After Operation for Ebstein Anomaly

Shown are the percentage of survey responders who rated their exercise tolerance related to other people their own age on a scale of 1 to 10.

Table 3	Self-Re	ported	Exercise	Tolerance
	JOHNO	porteu	LACICISC	Torcranec

My Ability of Exercise Relative to Peers Is	n = 285	%
Much greater	7	2.5
Slightly greater	29	10.2
About the same	105	36.8
Slightly less	89	31.2
Much less	43	15.1
I am unable to exercise	5	1.8
Unknown	7	2.5

J Am Coll Cardiol 2008;52:460–6

Survival after Surgery

539 Patients with mean [range] age at surgery 24 years [8 days to 79 years]

Early mortality: 4.8%

JTCVS 2008;135:1120-36

Reoperation after Surgery

50 Years of Age or Older

11 patients were > 60 years of age

Table 1	Clinical Characteristics	
Patient cha	racteristics (n = 81)	
Age at di	agnosis, yrs	$\textbf{43} \pm \textbf{19}$
Women		51 (63)
Pre-procedu	ral characteristics (n $=$ 89)	
Patient a	ge at surgery, yrs	59 ± 8
New York	Heart Association functional class	
I/II		13 (15)
III/IV		76 (85)
Dyspnea		74 (83)
Palpitatio	ns	69 (78)
Edema		30 (34)
Cyanosis		21 (24)
Stroke/TI	A	21 (24)
Dizziness		16 (18)
Right-side	ed heart failure	13 (15)
Syncope		7 (8)
Clubbing		6 (7)

Values are mean ± SD or n (%).

TIA = transient ischemic attack.

Table 2 Surgical Procedures Performed (N = 89)

Procedure Type	No. of Procedures (%)
Tricuspid valve operation	
Repair	22 (25)
Replacement	65 (73)
None	2 (2)
ASD/PF0 closure	58 (65)
Right reduction atrioplasty	41 (46)
Anterior right pericardectomy	18 (20)
Plication of atrialized RV	12 (13)
Right-sided maze procedure	18 (20)
Ablation of accessory pathway	9 (10)
CABG	9 (10)
Mitral valve surgery	6 (7)
Repair	4 (5)
Replacement	2 (2)
Bidirectional Glenn operation	2 (2)
Aortic root surgery	2 (2)
Repair of PS	1(1)
Permanent pacing	1(1)

ASD = atrial septal defect; CABG = coronary artery bypass grafting; PFO = patent foramen ovale; PS = pulmonary stenosis; RV = right ventricle.

J Am Coll Cardiol 2012;59:2101–6

50 Years of Age or Older

Early mortality: 4%

For the 71 patients with clinical follow-up, improvement in functional class occurred in 63 patients **(89%)**. Postoperatively, only 8 patients remained in functional class III or IV (11%).

J Am Coll Cardiol 2012;59:2101–6

50 Years of Age or Older

able 4	Univariate	Predictors	of Death	During	Follow-up
--------	------------	------------	----------	--------	-----------

Parameter	HR (95% CI)	p Value
No post-operative improvement	10.0 (3.01-33.4)	<0.001
Pre-operative history of heart failure	4.42 (1.42-13.7)	0.01
Pre-operative LVEF <50%	3.59 (1.20-10.7)	0.02
Diabetes mellitus	6.76 (1.43-31.9)	0.02
Pulmonary hypertension	1.21 (0.36-4.08)	0.75
History of atrial fibrillation	0.95 (0.26-3.46)	0.94
Tricuspid valve replacement	1.63 (0.44-5.99)	0.46
Male	1.96 (0.65-5.89)	0.23
Age at surgery, per 10 yrs	2.53 (1.28-5.00)	0.007

CI = confidence interval; HR = hazard ratio; LVEF = left ventricular ejection fraction.

J Am Coll Cardiol 2012;59:2101–6

Surgery + Maze operation Vs. Catheter ablation

Catheter Intervention

Class I

Adults with Ebstein's anomaly should have catheterization performed at centers with expertise in catheterization and management of such patients. (*Level of Evidence: C*)

Class IIa

Catheter ablation can be beneficial for treatment of recurrent supraventricular tachycardia in *some patients* with Ebstein's anomaly. (*Level of Evidence: B*)

Circulation. 2008;118:2395-2451

Catheter Intervention

Indications for catheter intervention		
 Patients with relevant arrhythmias should undergo electrophysiologic testing, followed by <u>ablation therapy, if feasible</u>, or surgical treatment of the arrhythmias in the case of planned heart surgery 	I	С
 In the case of documented systemic embolism probably caused by paradoxical embolism, isolated device closure of ASD/PFO should be considered 	lla	С
 If cyanosis (oxygen saturation at rest <90%) is the leading problem, isolated device closure of ASD/PFO may be considered but requires careful evaluation before intervention (see text) 	Шь	С

EHJ 2010;31:2915-2957

Accessory Pathway Mediated SVT

 Localization of accessory pathways is often challenging & > 50 % of patients have multiple accessory pathways

 The success rate for catheter ablation is lower in Ebstein anomaly (≤81 %) patients compared with patients with structurally normal hearts (≥95 %)

 Rarely, right coronary artery stenosis has been seen following catheter ablation

JTCVS 2004;128:826-33 Circulation. 2015;131:1110-1118

Ebstein Surgery & Maze

Recurrence of atrial fibrillation

- 6/14 (43.0%) without Maze op
- 12/48 (25.6%) with Maze or cryoablation

Circulation. 2015;131:1110-1118

Ebstein Surgery & Maze

86 patients who had corrective surgery and concomitant maze procedure

Outcome	Paroxysmal	Persistent	p Value	
No AFI/F + no AAM	-			
RSM	88%	71%	0.17	
BAM	77%	86%	0.08	
	0.08 ^a	0.053 ^a		
Freedom from warfarin				
RSM	83%	86%	0.87	
BAM	75%	71%	0.86	
	0.47 ^a	0.31 ^a		

Table 5.	Late Outcomes	According to	Type	of Preoperative
Arrhythn	nia	U		

^a Probability value for column comparison.

AAM = a	intiarrhythmic medications;	AFI/F =	atrial	flutter	o
fibrillation;	BAM = biatrial maze;	RSM = rig	ht-side	d maze	

Ann Thorac Surg 2015;99:1700–5

Ebstein Surgery & Maze

The absence of LAMF after the Cox maze III procedure is as high as 39% and has been demonstrated to persist up to 56 months.

Circulation. 2015;131:1110-1118

What to Do for a 75 Year Old Man of Severe Ebstein Anomaly with Decreased RV Function, Atrial Fibrillation

Surgery + Maze operation Anticoagulation

Earlier surgery should have been considered.

Thank you for your attention.

